/* * Copyright (c) 2020 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ScaleKernel.h" #include "arm_compute/core/AccessWindowStatic.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/NEON/wrapper/wrapper.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include "arm_compute/core/utils/quantization/AsymmHelpers.h" #include #include #include namespace arm_compute { Status validate_arguments(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, const GEMMLowpOutputStageInfo *output_stage) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::S32); ARM_COMPUTE_RETURN_ERROR_ON(output_stage->gemmlowp_max_bound > std::get<1>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type))); ARM_COMPUTE_RETURN_ERROR_ON(output_stage->gemmlowp_min_bound < std::get<0>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type)) || output_stage->gemmlowp_min_bound > output_stage->gemmlowp_max_bound); // Check biases if exist if(bias != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias); ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1); ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(0) != bias->dimension(0)); } if(output->total_size() != 0) { if(output->data_type() != output_stage->output_data_type && (output_stage->output_data_type == DataType::QASYMM8 || output_stage->output_data_type == DataType::QASYMM8_SIGNED)) { ARM_COMPUTE_RETURN_ERROR_MSG("Mismatching data types"); } ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output); } return Status{}; } inline void scale_input(int32x4x4_t &in_s32, int32x4_t result_offset_s32, int32_t result_mult_int) { // Add the offset terms to GEMM's result in_s32.val[0] = vaddq_s32(in_s32.val[0], result_offset_s32); in_s32.val[1] = vaddq_s32(in_s32.val[1], result_offset_s32); in_s32.val[2] = vaddq_s32(in_s32.val[2], result_offset_s32); in_s32.val[3] = vaddq_s32(in_s32.val[3], result_offset_s32); // Multiply by result_mult_int in_s32.val[0] = vmulq_n_s32(in_s32.val[0], result_mult_int); in_s32.val[1] = vmulq_n_s32(in_s32.val[1], result_mult_int); in_s32.val[2] = vmulq_n_s32(in_s32.val[2], result_mult_int); in_s32.val[3] = vmulq_n_s32(in_s32.val[3], result_mult_int); } template inline typename std::enable_if::value, typename wrapper::traits::neon_vector::type>::type convert_to_8bit(const int16x8x2_t in_s16) { return wrapper::vcombine(wrapper::vqmovun(in_s16.val[0]), wrapper::vqmovun(in_s16.val[1])); } template inline typename std::enable_if::value, typename wrapper::traits::neon_vector::type>::type convert_to_8bit(const int16x8x2_t in_s16) { return wrapper::vcombine(wrapper::vqmovn(in_s16.val[0]), wrapper::vqmovn(in_s16.val[1])); } template inline typename wrapper::traits::neon_vector::type finalize_quantization(int32x4x4_t &in_s32, int32x4_t result_shift_s32, typename wrapper::traits::neon_vector::type min, typename wrapper::traits::neon_vector::type max) { // Shift final result (negative value shift right) in_s32.val[0] = vshlq_s32(in_s32.val[0], result_shift_s32); in_s32.val[1] = vshlq_s32(in_s32.val[1], result_shift_s32); in_s32.val[2] = vshlq_s32(in_s32.val[2], result_shift_s32); in_s32.val[3] = vshlq_s32(in_s32.val[3], result_shift_s32); // Convert S32 to S16 const int16x8x2_t in_s16 = { { vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])), vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3])) } }; // Convert S16 to S8 or U8 typename wrapper::traits::neon_vector::type out = convert_to_8bit(in_s16); out = wrapper::vmax(out, min); out = wrapper::vmin(out, max); return out; } class Coordinates; template void NEGEMMLowpQuantizeDownInt32ScaleKernel::run(const Window &window) { using VectorType = typename wrapper::traits::neon_vector::type; const int32x4_t result_offset_s32 = vdupq_n_s32(_output_stage->gemmlowp_offset); const int32x4_t result_shift_s32 = vdupq_n_s32(-_output_stage->gemmlowp_shift); const int window_step_x = 16; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const int clamp_min = (_is_bounded_relu) ? _output_stage->gemmlowp_min_bound : std::numeric_limits::lowest(); const int clamp_max = (_is_bounded_relu) ? _output_stage->gemmlowp_max_bound : std::numeric_limits::max(); VectorType min = wrapper::vdup_n(static_cast(clamp_min), wrapper::traits::vector_128_tag{}); VectorType max = wrapper::vdup_n(static_cast(clamp_max), wrapper::traits::vector_128_tag{}); Window win(window); win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator in(_input, win); Iterator out(_output, win); if(_bias != nullptr) { Window win_biases; win_biases.set(Window::DimX, Window::Dimension(0, 1, 1)); win_biases.set(Window::DimY, Window::Dimension(0, 1, 1)); Iterator bias(_bias, win_biases); execute_window_loop(win, [&](const Coordinates &) { // Compute 16 elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { int32x4x4_t in_s32 = { { vld1q_s32(reinterpret_cast(in.ptr()) + x + 0), vld1q_s32(reinterpret_cast(in.ptr()) + x + 4), vld1q_s32(reinterpret_cast(in.ptr()) + x + 8), vld1q_s32(reinterpret_cast(in.ptr()) + x + 12) } }; const int32x4x4_t bias_s32 = { { vld1q_s32(reinterpret_cast(bias.ptr()) + x + 0), vld1q_s32(reinterpret_cast(bias.ptr()) + x + 4), vld1q_s32(reinterpret_cast(bias.ptr()) + x + 8), vld1q_s32(reinterpret_cast(bias.ptr()) + x + 12) } }; // Add the bias to GEMM's result in_s32.val[0] = vaddq_s32(in_s32.val[0], bias_s32.val[0]); in_s32.val[1] = vaddq_s32(in_s32.val[1], bias_s32.val[1]); in_s32.val[2] = vaddq_s32(in_s32.val[2], bias_s32.val[2]); in_s32.val[3] = vaddq_s32(in_s32.val[3], bias_s32.val[3]); // Add the offset terms to GEMM's result and multiply by result_mult_int scale_input(in_s32, result_offset_s32, _output_stage->gemmlowp_multiplier); wrapper::vstore(reinterpret_cast(out.ptr() + x), finalize_quantization(in_s32, result_shift_s32, min, max)); } // Compute left-over elements for(; x < window_end_x; ++x) { const int bias_value = *(reinterpret_cast(bias.ptr()) + x); int in_value = *(reinterpret_cast(in.ptr()) + x); // Quantize in_value = ((in_value + bias_value + _output_stage->gemmlowp_offset) * _output_stage->gemmlowp_multiplier) >> _output_stage->gemmlowp_shift; // Store the result *(out.ptr() + x) = static_cast(utility::clamp(in_value, clamp_min, clamp_max)); } }, in, bias, out); } else { execute_window_loop(win, [&](const Coordinates &) { // Compute 16 elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { int32x4x4_t in_s32 = { { vld1q_s32(reinterpret_cast(in.ptr()) + x + 0), vld1q_s32(reinterpret_cast(in.ptr()) + x + 4), vld1q_s32(reinterpret_cast(in.ptr()) + x + 8), vld1q_s32(reinterpret_cast(in.ptr()) + x + 12) } }; // Add the offset terms to GEMM's result and multiply by result_mult_int scale_input(in_s32, result_offset_s32, _output_stage->gemmlowp_multiplier); wrapper::vstore(reinterpret_cast(out.ptr() + x), finalize_quantization(in_s32, result_shift_s32, min, max)); } // Compute left-over elements for(; x < window_end_x; ++x) { int in_value = *(reinterpret_cast(in.ptr()) + x); // Quantize in_value = ((in_value + _output_stage->gemmlowp_offset) * _output_stage->gemmlowp_multiplier) >> _output_stage->gemmlowp_shift; // Store the result *(out.ptr() + x) = static_cast(utility::clamp(in_value, clamp_min, clamp_max)); } }, in, out); } } NEGEMMLowpQuantizeDownInt32ScaleKernel::NEGEMMLowpQuantizeDownInt32ScaleKernel() : _func(nullptr), _input(nullptr), _bias(nullptr), _output(nullptr), _output_stage(nullptr), _is_bounded_relu(false) { } void NEGEMMLowpQuantizeDownInt32ScaleKernel::configure(const ITensor *input, const ITensor *bias, ITensor *output, const GEMMLowpOutputStageInfo *output_stage) { // Perform validate step ARM_COMPUTE_ERROR_ON_NULLPTR(input, output, output_stage); // Output auto inizialitation if not yet initialized auto_init_if_empty(*output->info(), input->info()->clone()->set_data_type(output_stage->output_data_type)); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), (bias != nullptr) ? bias->info() : nullptr, output->info(), output_stage)); _input = input; _bias = bias; _output = output; _output_stage = output_stage; // Configure kernel window Window win = calculate_max_window(*input->info(), Steps()); Coordinates coord; coord.set_num_dimensions(output->info()->num_dimensions()); output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape())); INEKernel::configure(win); // Check if we need to clamp the result using min and max _is_bounded_relu = ((_output_stage->gemmlowp_min_bound != _output_stage->gemmlowp_max_bound) && !(_output_stage->gemmlowp_min_bound == std::get<0>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type)) && _output_stage->gemmlowp_max_bound == std::get<1>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type)))); if(_output_stage->output_data_type == DataType::QASYMM8) { _func = &NEGEMMLowpQuantizeDownInt32ScaleKernel::run; } else if(_output_stage->output_data_type == DataType::QASYMM8_SIGNED) { _func = &NEGEMMLowpQuantizeDownInt32ScaleKernel::run; } else { ARM_COMPUTE_ERROR("Data type not supported"); } } Status NEGEMMLowpQuantizeDownInt32ScaleKernel::validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, const GEMMLowpOutputStageInfo *output_stage) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, bias, output, output_stage)); return Status{}; } void NEGEMMLowpQuantizeDownInt32ScaleKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); (this->*_func)(window); } } // namespace arm_compute