/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEGEMMLowpOffsetContributionKernel.h" #include "arm_compute/core/AccessWindowStatic.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include #include #include using namespace arm_compute; namespace arm_compute { class Coordinates; } // namespace arm_compute namespace { Status validate_arguments(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, int32_t a_offset, int32_t b_offset) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(mm_result, 1, DataType::S32); // If a_offset == 0, vector_sum_col can be a nullptr if(a_offset != 0) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_col, 1, DataType::S32); ARM_COMPUTE_RETURN_ERROR_ON(vector_sum_col->dimension(0) != mm_result->dimension(0)); } // If b_offset == 0, vector_sum_row can be a nullptr if(b_offset != 0) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_row, 1, DataType::S32); // Check if input is a 3D reinterpretation const bool reinterpret_as_3d = mm_result->num_dimensions() > 1 && mm_result->tensor_shape().y() != vector_sum_row->tensor_shape().x(); // Validate input ARM_COMPUTE_RETURN_ERROR_ON(reinterpret_as_3d && vector_sum_row->dimension(0) != (mm_result->dimension(1) * mm_result->dimension(2))); ARM_COMPUTE_RETURN_ERROR_ON(!reinterpret_as_3d && vector_sum_row->dimension(0) != mm_result->dimension(1)); TensorShape output_shape = mm_result->tensor_shape(); if(output_shape.num_dimensions() > 1) { const unsigned int output_batch_idx = reinterpret_as_3d ? 3 : 2; TensorShape vector_sum_row_shape = vector_sum_row->tensor_shape(); vector_sum_row_shape.collapse_from(1); output_shape.collapse_from(output_batch_idx); ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_row_shape[1] != output_shape[output_batch_idx], "mm_result tensor must have the same number of batches of output tensor"); if(a_offset != 0) { TensorShape vector_sum_col_shape = vector_sum_col->tensor_shape(); vector_sum_col_shape.collapse_from(1); ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_col_shape[1] != 1 && vector_sum_col_shape[1] != vector_sum_row_shape[1], "vector_sum_col tensor must have the same number of batches of vector_sum_row_shape or the number of batches must be set to 1"); } } } return Status{}; } std::pair validate_and_configure_window(ITensorInfo *mm_result, ITensorInfo *vector_sum_col, ITensorInfo *vector_sum_row, int32_t a_offset, int32_t b_offset) { constexpr unsigned int num_elems_processed_per_iteration = 16; bool window_changed = false; // Configure kernel window Window win = calculate_max_window(*mm_result, Steps(num_elems_processed_per_iteration)); AccessWindowHorizontal mm_result_access(mm_result, 0, num_elems_processed_per_iteration); window_changed = window_changed || update_window_and_padding(win, mm_result_access); if(a_offset != 0) { AccessWindowHorizontal vector_sum_col_access(vector_sum_col, 0, num_elems_processed_per_iteration); window_changed = window_changed || update_window_and_padding(win, vector_sum_col_access); } if(b_offset != 0) { AccessWindowStatic vector_sum_row_access(vector_sum_row, 0, 0, vector_sum_row->dimension(0), 0); // NOLINT window_changed = window_changed || update_window_and_padding(win, vector_sum_row_access); } Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, win); } template void run_offset_contribution(const Window &window, ITensor *mm_result, const ITensor *vector_sum_col, const ITensor *vector_sum_row, int32_t a_offset, int32_t b_offset, int32_t k_offset, bool slide_vector_sum_col) { Window collapsed_window = window.collapse_if_possible(window, Window::DimZ); const int height_input = is_gemm3d ? mm_result->info()->dimension(1) : 0; const int depth_input = is_gemm3d ? mm_result->info()->dimension(2) : 1; if((a_offset != 0) && (b_offset != 0) && (vector_sum_col != nullptr) && (vector_sum_row != nullptr)) // true, true { // Set window for vector_sum_col Window win_vector_sum_col(collapsed_window); win_vector_sum_col.set(Window::DimY, Window::Dimension(0, 0, 0)); win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0)); // Set window for vector_sum_row Window win_vector_sum_row(collapsed_window); win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0)); win_vector_sum_row.set(Window::DimY, Window::Dimension(0, 0, 0)); win_vector_sum_row.set(Window::DimZ, Window::Dimension(0, 0, 0)); Iterator vector_sum_col_it(vector_sum_col, win_vector_sum_col); Iterator vector_sum_row_it(vector_sum_row, win_vector_sum_row); Iterator mm_result_it(mm_result, window); const size_t sum_row_stride_y = vector_sum_row->info()->strides_in_bytes().y(); // Offset in case vector_sum_col is batched const int vector_sum_col_batch_offset = slide_vector_sum_col ? vector_sum_col->info()->strides_in_bytes().z() : 0; execute_window_loop(collapsed_window, [&](const Coordinates & id) { const int batch_id = id.z() / depth_input; const auto vector_sum_col_ptr = reinterpret_cast(vector_sum_col_it.ptr() + batch_id * vector_sum_col_batch_offset); // Compute the leftover term due to a_offset. int32x4x4_t a_offset_term_s32 = { { vld1q_s32(vector_sum_col_ptr + 0), vld1q_s32(vector_sum_col_ptr + 4), vld1q_s32(vector_sum_col_ptr + 8), vld1q_s32(vector_sum_col_ptr + 12) } }; a_offset_term_s32.val[0] = vmulq_n_s32(a_offset_term_s32.val[0], a_offset); a_offset_term_s32.val[1] = vmulq_n_s32(a_offset_term_s32.val[1], a_offset); a_offset_term_s32.val[2] = vmulq_n_s32(a_offset_term_s32.val[2], a_offset); a_offset_term_s32.val[3] = vmulq_n_s32(a_offset_term_s32.val[3], a_offset); // Compute the leftover term due to b_offset. int32x4_t b_offset_term_s32 = vld1q_dup_s32(reinterpret_cast(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y) + id.y() + (id.z() % depth_input) * height_input); b_offset_term_s32 = vmulq_n_s32(b_offset_term_s32, b_offset); // Add a_offset_term_s32 and b_offset_term_s32 int32x4x4_t offset_term_s32 = { { vdupq_n_s32(k_offset), vdupq_n_s32(k_offset), vdupq_n_s32(k_offset), vdupq_n_s32(k_offset) } }; offset_term_s32.val[0] = vaddq_s32(offset_term_s32.val[0], vaddq_s32(a_offset_term_s32.val[0], b_offset_term_s32)); offset_term_s32.val[1] = vaddq_s32(offset_term_s32.val[1], vaddq_s32(a_offset_term_s32.val[1], b_offset_term_s32)); offset_term_s32.val[2] = vaddq_s32(offset_term_s32.val[2], vaddq_s32(a_offset_term_s32.val[2], b_offset_term_s32)); offset_term_s32.val[3] = vaddq_s32(offset_term_s32.val[3], vaddq_s32(a_offset_term_s32.val[3], b_offset_term_s32)); int32x4x4_t in_s32 = { { vld1q_s32(reinterpret_cast(mm_result_it.ptr()) + 0), vld1q_s32(reinterpret_cast(mm_result_it.ptr()) + 4), vld1q_s32(reinterpret_cast(mm_result_it.ptr()) + 8), vld1q_s32(reinterpret_cast(mm_result_it.ptr()) + 12) } }; // Add the offset terms to GEMM's result in_s32.val[0] = vaddq_s32(in_s32.val[0], offset_term_s32.val[0]); in_s32.val[1] = vaddq_s32(in_s32.val[1], offset_term_s32.val[1]); in_s32.val[2] = vaddq_s32(in_s32.val[2], offset_term_s32.val[2]); in_s32.val[3] = vaddq_s32(in_s32.val[3], offset_term_s32.val[3]); // Store the result with the offset contribution vst1q_s32(reinterpret_cast(mm_result_it.ptr()) + 0, in_s32.val[0]); vst1q_s32(reinterpret_cast(mm_result_it.ptr()) + 4, in_s32.val[1]); vst1q_s32(reinterpret_cast(mm_result_it.ptr()) + 8, in_s32.val[2]); vst1q_s32(reinterpret_cast(mm_result_it.ptr()) + 12, in_s32.val[3]); }, vector_sum_col_it, vector_sum_row_it, mm_result_it); } else if((a_offset == 0) && (b_offset != 0) && (vector_sum_row != nullptr)) // false, true { ARM_COMPUTE_ERROR_ON_NULLPTR(vector_sum_row); // Set window for vector_sum_row Window win_vector_sum_row(collapsed_window); win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0)); win_vector_sum_row.set(Window::DimY, Window::Dimension(0, 0, 0)); win_vector_sum_row.set(Window::DimZ, Window::Dimension(0, 0, 0)); Iterator vector_sum_row_it(vector_sum_row, win_vector_sum_row); Iterator mm_result_it(mm_result, window); const size_t sum_row_stride_y = vector_sum_row->info()->strides_in_bytes().y(); execute_window_loop(window, [&](const Coordinates & id) { const int batch_id = id.z() / depth_input; // Compute the leftover term due to b_offset. int32x4_t b_offset_term_s32 = vld1q_dup_s32(reinterpret_cast(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y) + id.y() + (id.z() % depth_input) * height_input); b_offset_term_s32 = vmulq_n_s32(b_offset_term_s32, b_offset); int32x4x4_t in_s32 = { { vld1q_s32(reinterpret_cast(mm_result_it.ptr()) + 0), vld1q_s32(reinterpret_cast(mm_result_it.ptr()) + 4), vld1q_s32(reinterpret_cast(mm_result_it.ptr()) + 8), vld1q_s32(reinterpret_cast(mm_result_it.ptr()) + 12) } }; // Add the offset terms to GEMM's result in_s32.val[0] = vaddq_s32(in_s32.val[0], b_offset_term_s32); in_s32.val[1] = vaddq_s32(in_s32.val[1], b_offset_term_s32); in_s32.val[2] = vaddq_s32(in_s32.val[2], b_offset_term_s32); in_s32.val[3] = vaddq_s32(in_s32.val[3], b_offset_term_s32); // Store the result with the offset contribution vst1q_s32(reinterpret_cast(mm_result_it.ptr()) + 0, in_s32.val[0]); vst1q_s32(reinterpret_cast(mm_result_it.ptr()) + 4, in_s32.val[1]); vst1q_s32(reinterpret_cast(mm_result_it.ptr()) + 8, in_s32.val[2]); vst1q_s32(reinterpret_cast(mm_result_it.ptr()) + 12, in_s32.val[3]); }, vector_sum_row_it, mm_result_it); } else if((a_offset != 0) && (b_offset == 0) && (vector_sum_col != nullptr)) // true, false { // Set window for vector_sum_col Window win_vector_sum_col(collapsed_window); win_vector_sum_col.set(Window::DimY, Window::Dimension(0, 0, 0)); win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0)); Iterator vector_sum_col_it(vector_sum_col, win_vector_sum_col); Iterator mm_result_it(mm_result, window); // Offset in case vector_sum_col is batched const int vector_sum_col_batch_offset = slide_vector_sum_col ? vector_sum_col->info()->strides_in_bytes().z() : 0; execute_window_loop(window, [&](const Coordinates & id) { const int batch_id = id.z() / depth_input; const auto vector_sum_col_ptr = reinterpret_cast(vector_sum_col_it.ptr() + batch_id * vector_sum_col_batch_offset); // Compute the leftover term due to a_offset. int32x4x4_t a_offset_term_s32 = { { vld1q_s32(vector_sum_col_ptr + 0), vld1q_s32(vector_sum_col_ptr + 4), vld1q_s32(vector_sum_col_ptr + 8), vld1q_s32(vector_sum_col_ptr + 12) } }; a_offset_term_s32.val[0] = vmulq_n_s32(a_offset_term_s32.val[0], a_offset); a_offset_term_s32.val[1] = vmulq_n_s32(a_offset_term_s32.val[1], a_offset); a_offset_term_s32.val[2] = vmulq_n_s32(a_offset_term_s32.val[2], a_offset); a_offset_term_s32.val[3] = vmulq_n_s32(a_offset_term_s32.val[3], a_offset); int32x4x4_t in_s32 = { { vld1q_s32(reinterpret_cast(mm_result_it.ptr()) + 0), vld1q_s32(reinterpret_cast(mm_result_it.ptr()) + 4), vld1q_s32(reinterpret_cast(mm_result_it.ptr()) + 8), vld1q_s32(reinterpret_cast(mm_result_it.ptr()) + 12) } }; // Add the offset terms to GEMM's result in_s32.val[0] = vaddq_s32(in_s32.val[0], a_offset_term_s32.val[0]); in_s32.val[1] = vaddq_s32(in_s32.val[1], a_offset_term_s32.val[1]); in_s32.val[2] = vaddq_s32(in_s32.val[2], a_offset_term_s32.val[2]); in_s32.val[3] = vaddq_s32(in_s32.val[3], a_offset_term_s32.val[3]); // Store the result with the offset contribution vst1q_s32(reinterpret_cast(mm_result_it.ptr()) + 0, in_s32.val[0]); vst1q_s32(reinterpret_cast(mm_result_it.ptr()) + 4, in_s32.val[1]); vst1q_s32(reinterpret_cast(mm_result_it.ptr()) + 8, in_s32.val[2]); vst1q_s32(reinterpret_cast(mm_result_it.ptr()) + 12, in_s32.val[3]); }, vector_sum_col_it, mm_result_it); } else // false, false { // No offset contribution from matrix A and matrix B return; } } } // namespace NEGEMMLowpOffsetContributionKernel::NEGEMMLowpOffsetContributionKernel() : _vector_sum_col(nullptr), _vector_sum_row(nullptr), _mm_result(nullptr), _a_offset(0), _b_offset(0), _k_offset(0), _slide_vector_sum_col(true) { } void NEGEMMLowpOffsetContributionKernel::configure(ITensor *mm_result, const ITensor *vector_sum_col, const ITensor *vector_sum_row, int32_t k, int32_t a_offset, int32_t b_offset) { // Perform validate step ARM_COMPUTE_ERROR_ON_NULLPTR(mm_result); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(mm_result->info(), vector_sum_col != nullptr ? vector_sum_col->info() : nullptr, // NOLINT vector_sum_row != nullptr ? vector_sum_row->info() : nullptr, // NOLINT a_offset, b_offset)); // NOLINT _vector_sum_col = vector_sum_col; _vector_sum_row = vector_sum_row; _mm_result = mm_result; _a_offset = a_offset; _b_offset = b_offset; _k_offset = a_offset * b_offset * k; // If a_offset == 0, vector_sum_col can be a nullptr if(a_offset != 0) { // Check if vector_sum_col_shape should be slidden or not // Don't slide vector_sum_col_shape along the y dimension if vector_sum_col_shape has just 1 dimension and vector_sum_row_shape more than 1 // This scenario can happen when the the matrix multiplication is used to perform a convolution operation _slide_vector_sum_col = vector_sum_col->info()->tensor_shape().num_dimensions() > 1; } // Configure kernel window auto win_config = validate_and_configure_window(mm_result->info(), vector_sum_col != nullptr ? vector_sum_col->info() : nullptr, // NOLINT vector_sum_row != nullptr ? vector_sum_row->info() : nullptr, // NOLINT a_offset, b_offset); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); INEKernel::configure(win_config.second); } Status NEGEMMLowpOffsetContributionKernel::validate(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, int32_t a_offset, int32_t b_offset) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(mm_result, vector_sum_col, vector_sum_row, a_offset, b_offset)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(mm_result->clone().get(), vector_sum_col != nullptr ? vector_sum_col->clone().get() : nullptr, vector_sum_row != nullptr ? vector_sum_row->clone().get() : nullptr, a_offset, b_offset) .first); // NOLINT return Status{}; } void NEGEMMLowpOffsetContributionKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); // Check if input is a 3D reinterpretation const bool reinterpret_as_3d = _vector_sum_row != nullptr && _mm_result->info()->num_dimensions() > 1 && _mm_result->info()->tensor_shape().y() != _vector_sum_row->info()->tensor_shape().x(); if(reinterpret_as_3d) { run_offset_contribution(window, _mm_result, _vector_sum_col, _vector_sum_row, _a_offset, _b_offset, _k_offset, _slide_vector_sum_col); } else { run_offset_contribution(window, _mm_result, _vector_sum_col, _vector_sum_row, _a_offset, _b_offset, _k_offset, _slide_vector_sum_col); } }