/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEGEMMLowpMatrixMultiplyKernel.h" #include "arm_compute/core/AccessWindowStatic.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include #include #include #include using namespace arm_compute; namespace arm_compute { class Coordinates; } // namespace arm_compute namespace { Error validate_arguments(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input0, 1, DataType::QASYMM8, DataType::S8, DataType::U8); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, input1); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S32); TensorShape in0_shape = input0->tensor_shape(); TensorShape in1_shape = input1->tensor_shape(); TensorShape out_shape = output->tensor_shape(); in0_shape.collapse(2); in1_shape.collapse(2); out_shape.collapse(2); ARM_COMPUTE_RETURN_ERROR_ON_MSG(in0_shape[2] != out_shape[2], "Output tensor must have the same number of batches of input0 tensor"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(in1_shape[2] != 1 && in0_shape[2] != in1_shape[2], "Input1 tensor must have the same number of batches of input0 or the number of batches must be set to 1"); return Error{}; } std::pair validate_and_configure_window(ITensorInfo *input0, ITensorInfo *input1, ITensorInfo *output) { constexpr unsigned int num_elems_processed_per_iteration_x = 16; constexpr unsigned int num_elems_processed_per_iteration_y = 4; Window win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y)); AccessWindowStatic in0_access(input0, 0, 0, ceil_to_multiple(input0->dimension(0), 8), input0->dimension(1)); AccessWindowHorizontal in1_access(input1, 0, num_elems_processed_per_iteration_x); AccessWindowRectangle output_access(output, 0, 0, num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y); bool window_changed = update_window_and_padding(win, in0_access, in1_access, output_access); output_access.set_valid_region(win, ValidRegion(Coordinates(0, 0), output->tensor_shape())); Error err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Error{}; return std::make_pair(err, win); } } // namespace NEGEMMLowpMatrixMultiplyKernel::NEGEMMLowpMatrixMultiplyKernel() : _input0(nullptr), _input1(nullptr), _output(nullptr), _slide_matrix_b(true) { } void NEGEMMLowpMatrixMultiplyKernel::configure(const ITensor *input0, const ITensor *input1, ITensor *output) { ARM_COMPUTE_ERROR_ON_NULLPTR(input0, input1, output); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input0->info(), input1->info(), output->info())); TensorShape in1_shape = input1->info()->tensor_shape(); in1_shape.collapse(2); _input0 = input0; _input1 = input1; _output = output; _slide_matrix_b = in1_shape[2] != 1; // Configure kernel window auto win_config = validate_and_configure_window(input0->info(), input1->info(), output->info()); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); INEKernel::configure(win_config.second); } Error NEGEMMLowpMatrixMultiplyKernel::validate(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input0, input1, output)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input0->clone().get(), input1->clone().get(), output->clone().get()).first); return Error{}; } void inline matrix_multiply_u8(Iterator &ina, Iterator &inb, Iterator &out, int width_b, size_t out_stride, const Window &window) { execute_window_loop(window, [&](const Coordinates & id) { const uint8_t *mtx_a0 = ina.ptr(); const uint8_t *mtx_b0 = inb.ptr(); // Note: Since the input are all positives, we can use uint32_t // Accumulators for the block 0 uint32x4x4_t c0 = { { vdupq_n_u32(0), vdupq_n_u32(0), vdupq_n_u32(0), vdupq_n_u32(0) } }; // Accumulators for the block 1 uint32x4x4_t c1 = { { vdupq_n_u32(0), vdupq_n_u32(0), vdupq_n_u32(0), vdupq_n_u32(0) } }; // Accumulators for the block 2 uint32x4x4_t c2 = { { vdupq_n_u32(0), vdupq_n_u32(0), vdupq_n_u32(0), vdupq_n_u32(0) } }; // Accumulators for the block 3 uint32x4x4_t c3 = { { vdupq_n_u32(0), vdupq_n_u32(0), vdupq_n_u32(0), vdupq_n_u32(0) } }; for(int k = 0; k < width_b; k += 16, mtx_a0 += 4, mtx_b0 += 16) { const uint8x8_t a00_u8 = vld1_u8(mtx_a0); const uint8x16_t b00_u8 = vld1q_u8(mtx_b0); // Convert a00_s8 to uint16_t and get the lower part const uint16x4_t a00_u16 = vget_low_u16(vmovl_u8(a00_u8)); // Convert b00_s8 to uint16_t const uint16x4x4_t b00_u16 = { { vget_low_u16(vmovl_u8(vget_low_u8(b00_u8))), vget_high_u16(vmovl_u8(vget_low_u8(b00_u8))), vget_low_u16(vmovl_u8(vget_high_u8(b00_u8))), vget_high_u16(vmovl_u8(vget_high_u8(b00_u8))) } }; // 4x4 block 0 c0.val[0] = vmlal_lane_u16(c0.val[0], b00_u16.val[0], a00_u16, 0); c0.val[1] = vmlal_lane_u16(c0.val[1], b00_u16.val[1], a00_u16, 0); c0.val[2] = vmlal_lane_u16(c0.val[2], b00_u16.val[2], a00_u16, 0); c0.val[3] = vmlal_lane_u16(c0.val[3], b00_u16.val[3], a00_u16, 0); // 4x4 block 1 c1.val[0] = vmlal_lane_u16(c1.val[0], b00_u16.val[0], a00_u16, 1); c1.val[1] = vmlal_lane_u16(c1.val[1], b00_u16.val[1], a00_u16, 1); c1.val[2] = vmlal_lane_u16(c1.val[2], b00_u16.val[2], a00_u16, 1); c1.val[3] = vmlal_lane_u16(c1.val[3], b00_u16.val[3], a00_u16, 1); // 4x4 block 2 c2.val[0] = vmlal_lane_u16(c2.val[0], b00_u16.val[0], a00_u16, 2); c2.val[1] = vmlal_lane_u16(c2.val[1], b00_u16.val[1], a00_u16, 2); c2.val[2] = vmlal_lane_u16(c2.val[2], b00_u16.val[2], a00_u16, 2); c2.val[3] = vmlal_lane_u16(c2.val[3], b00_u16.val[3], a00_u16, 2); // 4x4 block 3 c3.val[0] = vmlal_lane_u16(c3.val[0], b00_u16.val[0], a00_u16, 3); c3.val[1] = vmlal_lane_u16(c3.val[1], b00_u16.val[1], a00_u16, 3); c3.val[2] = vmlal_lane_u16(c3.val[2], b00_u16.val[2], a00_u16, 3); c3.val[3] = vmlal_lane_u16(c3.val[3], b00_u16.val[3], a00_u16, 3); } auto mtx_out = reinterpret_cast(out.ptr()); vst1q_s32(mtx_out + 0 * out_stride + 0, vreinterpretq_s32_u32(c0.val[0])); vst1q_s32(mtx_out + 0 * out_stride + 4, vreinterpretq_s32_u32(c0.val[1])); vst1q_s32(mtx_out + 0 * out_stride + 8, vreinterpretq_s32_u32(c0.val[2])); vst1q_s32(mtx_out + 0 * out_stride + 12, vreinterpretq_s32_u32(c0.val[3])); vst1q_s32(mtx_out + 1 * out_stride + 0, vreinterpretq_s32_u32(c1.val[0])); vst1q_s32(mtx_out + 1 * out_stride + 4, vreinterpretq_s32_u32(c1.val[1])); vst1q_s32(mtx_out + 1 * out_stride + 8, vreinterpretq_s32_u32(c1.val[2])); vst1q_s32(mtx_out + 1 * out_stride + 12, vreinterpretq_s32_u32(c1.val[3])); vst1q_s32(mtx_out + 2 * out_stride + 0, vreinterpretq_s32_u32(c2.val[0])); vst1q_s32(mtx_out + 2 * out_stride + 4, vreinterpretq_s32_u32(c2.val[1])); vst1q_s32(mtx_out + 2 * out_stride + 8, vreinterpretq_s32_u32(c2.val[2])); vst1q_s32(mtx_out + 2 * out_stride + 12, vreinterpretq_s32_u32(c2.val[3])); vst1q_s32(mtx_out + 3 * out_stride + 0, vreinterpretq_s32_u32(c3.val[0])); vst1q_s32(mtx_out + 3 * out_stride + 4, vreinterpretq_s32_u32(c3.val[1])); vst1q_s32(mtx_out + 3 * out_stride + 8, vreinterpretq_s32_u32(c3.val[2])); vst1q_s32(mtx_out + 3 * out_stride + 12, vreinterpretq_s32_u32(c3.val[3])); }, ina, inb, out); } void inline matrix_multiply_s8(Iterator &ina, Iterator &inb, Iterator &out, int width_b, size_t out_stride, const Window &window) { // The implementation assumes that the matrix A and Matrix B have been reshaped respectively with NEGEMMInterleave4x4 and NEGEMMTranspose1xW // The reshaping of the matrices helps to have a cache friendly implementation and helps to avoid the data re-arrangements needed for computing 16x4 elements per iteration // All the values needed for computing a single 4x4 block will be read from consecutive memory positions execute_window_loop(window, [&](const Coordinates & id) { auto *mtx_a0 = reinterpret_cast(ina.ptr()); auto *mtx_b0 = reinterpret_cast(inb.ptr()); // Note: Since the input are all positives, we can use uint32_t // Accumulators for the block 0 int32x4x4_t c0 = { { vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0) } }; // Accumulators for the block 1 int32x4x4_t c1 = { { vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0) } }; // Accumulators for the block 2 int32x4x4_t c2 = { { vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0) } }; // Accumulators for the block 3 int32x4x4_t c3 = { { vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0) } }; for(int k = 0; k < width_b; k += 16, mtx_a0 += 4, mtx_b0 += 16) { const int8x8_t a00_s8 = vld1_s8(mtx_a0); const int8x16_t b00_s8 = vld1q_s8(mtx_b0); // Convert a00_s8 to uint16_t and get the lower part const int16x4_t a00_s16 = vget_low_s16(vmovl_s8(a00_s8)); // Convert b00_s8 to int16_t const int16x4x4_t b00_s16 = { { vget_low_s16(vmovl_s8(vget_low_s8(b00_s8))), vget_high_s16(vmovl_s8(vget_low_s8(b00_s8))), vget_low_s16(vmovl_s8(vget_high_s8(b00_s8))), vget_high_s16(vmovl_s8(vget_high_s8(b00_s8))) } }; // 4x4 block 0 c0.val[0] = vmlal_lane_s16(c0.val[0], b00_s16.val[0], a00_s16, 0); c0.val[1] = vmlal_lane_s16(c0.val[1], b00_s16.val[1], a00_s16, 0); c0.val[2] = vmlal_lane_s16(c0.val[2], b00_s16.val[2], a00_s16, 0); c0.val[3] = vmlal_lane_s16(c0.val[3], b00_s16.val[3], a00_s16, 0); // 4x4 block 1 c1.val[0] = vmlal_lane_s16(c1.val[0], b00_s16.val[0], a00_s16, 1); c1.val[1] = vmlal_lane_s16(c1.val[1], b00_s16.val[1], a00_s16, 1); c1.val[2] = vmlal_lane_s16(c1.val[2], b00_s16.val[2], a00_s16, 1); c1.val[3] = vmlal_lane_s16(c1.val[3], b00_s16.val[3], a00_s16, 1); // 4x4 block 2 c2.val[0] = vmlal_lane_s16(c2.val[0], b00_s16.val[0], a00_s16, 2); c2.val[1] = vmlal_lane_s16(c2.val[1], b00_s16.val[1], a00_s16, 2); c2.val[2] = vmlal_lane_s16(c2.val[2], b00_s16.val[2], a00_s16, 2); c2.val[3] = vmlal_lane_s16(c2.val[3], b00_s16.val[3], a00_s16, 2); // 4x4 block 3 c3.val[0] = vmlal_lane_s16(c3.val[0], b00_s16.val[0], a00_s16, 3); c3.val[1] = vmlal_lane_s16(c3.val[1], b00_s16.val[1], a00_s16, 3); c3.val[2] = vmlal_lane_s16(c3.val[2], b00_s16.val[2], a00_s16, 3); c3.val[3] = vmlal_lane_s16(c3.val[3], b00_s16.val[3], a00_s16, 3); } auto mtx_out = reinterpret_cast(out.ptr()); vst1q_s32(mtx_out + 0 * out_stride + 0, c0.val[0]); vst1q_s32(mtx_out + 0 * out_stride + 4, c0.val[1]); vst1q_s32(mtx_out + 0 * out_stride + 8, c0.val[2]); vst1q_s32(mtx_out + 0 * out_stride + 12, c0.val[3]); vst1q_s32(mtx_out + 1 * out_stride + 0, c1.val[0]); vst1q_s32(mtx_out + 1 * out_stride + 4, c1.val[1]); vst1q_s32(mtx_out + 1 * out_stride + 8, c1.val[2]); vst1q_s32(mtx_out + 1 * out_stride + 12, c1.val[3]); vst1q_s32(mtx_out + 2 * out_stride + 0, c2.val[0]); vst1q_s32(mtx_out + 2 * out_stride + 4, c2.val[1]); vst1q_s32(mtx_out + 2 * out_stride + 8, c2.val[2]); vst1q_s32(mtx_out + 2 * out_stride + 12, c2.val[3]); vst1q_s32(mtx_out + 3 * out_stride + 0, c3.val[0]); vst1q_s32(mtx_out + 3 * out_stride + 4, c3.val[1]); vst1q_s32(mtx_out + 3 * out_stride + 8, c3.val[2]); vst1q_s32(mtx_out + 3 * out_stride + 12, c3.val[3]); }, ina, inb, out); } void NEGEMMLowpMatrixMultiplyKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); const size_t in_b_stride = _input1->info()->strides_in_bytes()[1]; const size_t out_stride = _output->info()->strides_in_bytes()[1] / _output->info()->element_size(); // Set step_x and step_y for matrix A. Scale by a factor of 4 the Y range as the input interleaved matrix A has 4 times less the rows of the output matrix Window win_a(window); win_a.set(Window::DimX, Window::Dimension(0, 0, 0)); win_a.set(Window::DimY, Window::Dimension(window.y().start() / 4, window.y().end() / 4, 1)); // Set step_x and step_y for matrix B. Scale by a factor of 16 the X range as the input transposed matrix A has 16 times less the columns of the output matrix Window win_b; // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2 // This scenario can happen when the the matrix multiplication is used to perform a convolution operation if(_slide_matrix_b) { win_b = window; } win_b.set(Window::DimX, Window::Dimension(window.x().start() / 16, window.x().end() / 16, in_b_stride)); win_b.set(Window::DimY, Window::Dimension(0, 0, 0)); // The step x and step y for the output matrix has been already set using in configure() Iterator ina(_input0, win_a); Iterator inb(_input1, win_b); Iterator out(_output, window); const int width_b = _input1->info()->dimension(0); switch(_input0->info()->data_type()) { case DataType::S8: { matrix_multiply_s8(ina, inb, out, width_b, out_stride, window); break; } case DataType::U8: case DataType::QASYMM8: { matrix_multiply_u8(ina, inb, out, width_b, out_stride, window); break; } default: { ARM_COMPUTE_ERROR("Not supported"); break; } } }