/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEGEMMInterleaveBlockedKernel.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/NEON/INEKernel.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include #include #include #include using namespace arm_compute; namespace { TensorShape get_output_shape(const ITensorInfo *input, unsigned int block_height) { TensorShape output_shape = input->tensor_shape(); const float interleave_by_f32 = block_height; output_shape.set(0, input->dimension(0) * interleave_by_f32); output_shape.set(1, std::ceil(static_cast(input->dimension(1)) / interleave_by_f32)); return output_shape; } Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, unsigned int block_width, unsigned int block_height) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8); ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(output); ARM_COMPUTE_RETURN_ERROR_ON_MSG(block_height < 1, "Block height must be greater than 0"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(block_width < 1, "Block window must be greater than 0"); if(output->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), get_output_shape(input, block_height)); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT(input, output); } return Status{}; } std::pair validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, unsigned int block_width, unsigned int block_height) { const unsigned int num_elems_processed_per_iteration_x = block_width; const unsigned int num_elems_processed_per_iteration_y = block_height; bool window_changed = false; // Configure kernel window Window win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y)); const float scaley_factor = 1.f / block_height; AccessWindowRectangle input_access(input, 0, 0, num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y); window_changed = window_changed || update_window_and_padding(win, input_access); // Configure window in case of configured output if(output->total_size() != 0) { AccessWindowRectangle output_access(output, 0, 0, num_elems_processed_per_iteration_x * num_elems_processed_per_iteration_y, 1, num_elems_processed_per_iteration_y, scaley_factor); window_changed = window_changed || update_window_and_padding(win, output_access); output_access.set_valid_region(win, input->valid_region()); } Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, win); } inline void gemm_interleave_blocked_transposed_8bit(const ITensor *input, ITensor *output, const Window &window, unsigned int block_width, unsigned int block_height) { const size_t in_stride = input->info()->strides_in_bytes()[1]; const unsigned int in_height = input->info()->dimension(1); const unsigned int in_width = input->info()->dimension(0); const float scale_y_factor = 1.f / float(block_height); // Set window for output tensor Window win_out(window); win_out.scale(Window::DimY, scale_y_factor); Iterator in(input, window); win_out.set_dimension_step(Window::DimX, block_width * block_height); Iterator out(output, win_out); execute_window_loop(window, [&](const Coordinates &) { std::fill_n(out.ptr(), block_width * block_height, 0); }, out); execute_window_loop(window, [&](const Coordinates & id) { for(unsigned int z = id.y(); (z < in_width) && z < (id.y() + block_height); ++z) { int j = (z - id.y()) * block_width; for(unsigned int b = id.x(); (b < in_height) && (b < (id.x() + block_width)); ++b) { *(out.ptr() + j++) = *(input->buffer() + b * in_stride + z); } } }, in, out); } inline void gemm_interleave_blocked_8bit(const ITensor *input, ITensor *output, const Window &window, unsigned int block_width, unsigned int block_height) { const size_t in_stride = input->info()->strides_in_bytes()[1]; const unsigned int in_height = input->info()->dimension(1); const unsigned int in_width = input->info()->dimension(0); const float scale_y_factor = 1.f / float(block_height); // Set window for output tensor Window win_out(window); win_out.scale(Window::DimY, scale_y_factor); Iterator in(input, window); win_out.set_dimension_step(Window::DimX, block_width * block_height); Iterator out(output, win_out); execute_window_loop(window, [&](const Coordinates &) { std::fill_n(out.ptr(), block_width * block_height, 0); }, out); execute_window_loop(window, [&](const Coordinates & id) { for(unsigned int z = id.y(); (z < in_height) && z < (id.y() + block_height); ++z) { int j = (z - id.y()) * block_width; for(unsigned int b = id.x(); (b < in_width) && (b < (id.x() + block_width)); ++b) { *(out.ptr() + j++) = *(input->buffer() + z * in_stride + b); } } }, in, out); } } // namespace NEGEMMInterleaveBlockedKernel::NEGEMMInterleaveBlockedKernel() : _block_height(0), _block_width(0), _transpose(false) { } void NEGEMMInterleaveBlockedKernel::configure(const ITensor *input, ITensor *output, unsigned int block_height, unsigned int block_width, bool transpose) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); // Output auto inizialitation if not yet initialized auto_init_if_empty(*output->info(), get_output_shape(input->info(), block_height), 1, input->info()->data_type(), input->info()->fixed_point_position()); // Perform validation step ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), block_width, block_height)); _input = input; _output = output; _block_height = block_height; _block_width = block_width; _transpose = transpose; // Configure kernel window auto win_config = validate_and_configure_window(input->info(), output->info(), block_width, block_height); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); INEKernel::configure(win_config.second); } Status NEGEMMInterleaveBlockedKernel::validate(const ITensorInfo *input, const ITensorInfo *output, unsigned int block_height, unsigned int block_width, bool transpose) { ARM_COMPUTE_UNUSED(transpose); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, block_width, block_height)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get(), block_width, block_height).first); return Status{}; } void NEGEMMInterleaveBlockedKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); if(_transpose) { gemm_interleave_blocked_transposed_8bit(_input, _output, window, _block_width, _block_height); } else { gemm_interleave_blocked_8bit(_input, _output, window, _block_width, _block_height); } }