/* * Copyright (c) 2018-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEFuseBatchNormalizationKernel.h" #include "arm_compute/core/CPP/Validate.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/NEON/wrapper/wrapper.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include "support/ToolchainSupport.h" #include "utils/TypePrinter.h" #include namespace arm_compute { namespace { Status validate_arguments(const ITensorInfo *input_weights, const ITensorInfo *bn_mean, const ITensorInfo *bn_var, const ITensorInfo *fused_weights, const ITensorInfo *fused_bias, const ITensorInfo *input_bias, const ITensorInfo *bn_beta, const ITensorInfo *bn_gamma, float epsilon, FuseBatchNormalizationType fbn_type) { ARM_COMPUTE_UNUSED(epsilon); ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input_weights, bn_mean, bn_var); ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input_weights); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input_weights, 1, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(bn_mean, bn_var); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_weights, bn_mean, bn_var); ARM_COMPUTE_RETURN_ERROR_ON(input_bias == nullptr && fused_bias == nullptr); ARM_COMPUTE_RETURN_ERROR_ON(bn_mean->num_dimensions() > 1); if(fbn_type == FuseBatchNormalizationType::CONVOLUTION) { ARM_COMPUTE_RETURN_ERROR_ON(input_weights->dimension(3) != bn_mean->dimension(0)); } else { const size_t channel_idx = get_data_layout_dimension_index(input_weights->data_layout(), DataLayoutDimension::CHANNEL); ARM_COMPUTE_RETURN_ERROR_ON(input_weights->dimension(channel_idx) != bn_mean->dimension(0)); } // Validate bias if(input_bias != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(bn_mean, input_bias); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_weights, input_bias); } // Validate beta if(bn_beta != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(bn_mean, bn_beta); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_weights, bn_beta); } // Validate gamma if(bn_gamma != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(bn_mean, bn_gamma); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_weights, bn_gamma); } // Validate output weights if(fused_weights != nullptr && fused_weights->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input_weights, fused_weights); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input_weights, fused_weights); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_weights, fused_weights); } // Validate output bias if(fused_bias != nullptr && fused_bias->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(bn_mean, fused_bias); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_weights, fused_bias); } return Status{}; } template void fused_batch_normalization_conv(const ITensor *conv_weights, const ITensor *conv_bias, ITensor *fused_weights, ITensor *fused_bias, const ITensor *bn_mean, const ITensor *bn_var, const ITensor *bn_beta, const ITensor *bn_gamma, float epsilon, const Window &window) { using ScalarType = typename VectorType::scalar_type; const int size = 16 / conv_weights->info()->element_size(); using ExactTagType = typename VectorType::tag_type; const bool run_in_place_weights = (fused_weights == nullptr) || (fused_weights == conv_weights); const bool run_in_place_bias = (fused_bias == nullptr) || (conv_bias != nullptr && fused_bias == conv_bias); // Set build options Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); const int window_step_x = size; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); Iterator conv_w_in(conv_weights, win); Iterator conv_w_out(run_in_place_weights ? conv_weights : fused_weights, win); const auto conv_bias_in = (conv_bias != nullptr ? reinterpret_cast(conv_bias->ptr_to_element(Coordinates(0, 0))) : nullptr); auto conv_bias_out = (run_in_place_bias ? conv_bias_in : reinterpret_cast(fused_bias->ptr_to_element(Coordinates(0, 0)))); const auto input_mean = reinterpret_cast(bn_mean->ptr_to_element(Coordinates(0, 0))); const auto input_var = reinterpret_cast(bn_var->ptr_to_element(Coordinates(0, 0))); const auto input_gamma = (bn_gamma != nullptr) ? reinterpret_cast(bn_gamma->ptr_to_element(Coordinates(0, 0))) : nullptr; const auto input_beta = (bn_beta != nullptr) ? reinterpret_cast(bn_beta->ptr_to_element(Coordinates(0, 0))) : nullptr; auto mean_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{}); auto var_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{}); auto gamma_vec = wrapper::vdup_n(ScalarType(1), ExactTagType{}); auto beta_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{}); auto rvar_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{}); const auto epsilon_vec = wrapper::vdup_n(ScalarType(epsilon), ExactTagType{}); auto mean = ScalarType(0.0); auto var = ScalarType(0.0); auto gamma = ScalarType(1.0); auto beta = ScalarType(0.0); auto conv_bias_in_scalar = ScalarType(0.0); execute_window_loop(win, [&](const Coordinates & id) { var = input_var[id[3]]; if(input_gamma != nullptr) { gamma = input_gamma[id[3]]; } if((id[0] == 0) && (id[1] == 0) && (id[2] == 0)) { if(input_beta != nullptr) { beta = input_beta[id[3]]; beta_vec = wrapper::vdup_n(beta, ExactTagType{}); } // Construct vectors mean = input_mean[id[3]]; mean_vec = wrapper::vdup_n(mean, ExactTagType{}); if(conv_bias_in != nullptr) { conv_bias_in_scalar = conv_bias_in[id[3]]; } auto conv_bias_tmp_scalar = (conv_bias_in_scalar - mean) / std::sqrt(var + ScalarType(epsilon)); conv_bias_out[id[3]] = (conv_bias_tmp_scalar * gamma) + beta; } int x = window_start_x; auto conv_w_in_ptr = reinterpret_cast(conv_w_in.ptr()); auto conv_w_out_ptr = reinterpret_cast(conv_w_out.ptr()); var_vec = wrapper::vdup_n(var, ExactTagType{}); gamma_vec = wrapper::vdup_n(gamma, ExactTagType{}); rvar_vec = wrapper::vinvsqrt(wrapper::vadd(var_vec, epsilon_vec)); for(; x <= (window_end_x - window_step_x); x += window_step_x) { auto wn = wrapper::vloadq(conv_w_in_ptr + x); wn = wrapper::vmul(wn, rvar_vec); wn = wrapper::vmul(wn, gamma_vec); // Store results wrapper::vstore(conv_w_out_ptr + x, wn); } // Compute left-over elements for(; x < window_end_x; ++x) { *(conv_w_out_ptr + x) = *(conv_w_in_ptr + x) / std::sqrt(var + ScalarType(epsilon)) * gamma; } }, conv_w_in, conv_w_out); } template void fused_batch_normalization_dwc_nhwc(const ITensor *dwc_weights, const ITensor *dwc_bias, ITensor *fused_weights, ITensor *fused_bias, const ITensor *bn_mean, const ITensor *bn_var, const ITensor *bn_beta, const ITensor *bn_gamma, float epsilon, const Window &window) { using ScalarType = typename VectorType::scalar_type; const int size = 16 / dwc_weights->info()->element_size(); using ExactTagType = typename VectorType::tag_type; const bool run_in_place_weights = (fused_weights == nullptr) || (fused_weights == dwc_weights); const bool run_in_place_bias = (fused_bias == nullptr) || (dwc_bias != nullptr && fused_bias == dwc_bias); // Set build options Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); const int window_step_x = size; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); Iterator dwc_w_in(dwc_weights, win); Iterator dwc_w_out(run_in_place_weights ? dwc_weights : fused_weights, win); const auto dwc_bias_in = (dwc_bias != nullptr ? reinterpret_cast(dwc_bias->ptr_to_element(Coordinates(0, 0))) : nullptr); auto dwc_bias_out = (run_in_place_bias ? dwc_bias_in : reinterpret_cast(fused_bias->ptr_to_element(Coordinates(0, 0)))); const auto input_mean = reinterpret_cast(bn_mean->ptr_to_element(Coordinates(0, 0))); const auto input_var = reinterpret_cast(bn_var->ptr_to_element(Coordinates(0, 0))); const auto input_gamma = (bn_gamma != nullptr) ? reinterpret_cast(bn_gamma->ptr_to_element(Coordinates(0, 0))) : nullptr; const auto input_beta = (bn_beta != nullptr) ? reinterpret_cast(bn_beta->ptr_to_element(Coordinates(0, 0))) : nullptr; auto mean_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{}); auto var_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{}); auto gamma_vec = wrapper::vdup_n(ScalarType(1), ExactTagType{}); auto beta_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{}); auto rvar_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{}); auto dwc_bias_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{}); const auto epsilon_vec = wrapper::vdup_n(ScalarType(epsilon), ExactTagType{}); auto gamma = ScalarType(1.0); auto beta = ScalarType(0.0); auto dwc_bias_in_scalar = ScalarType(0); execute_window_loop(win, [&](const Coordinates & id) { int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { var_vec = wrapper::vloadq(input_var + x); if(input_gamma != nullptr) { gamma_vec = wrapper::vloadq(input_gamma + x); } if((id[2] == 0) && (id[1] == 0)) { mean_vec = wrapper::vloadq(input_mean + x); // Construct vectors if(input_beta != nullptr) { beta_vec = wrapper::vloadq(input_beta + x); } if(dwc_bias_in != nullptr) { dwc_bias_vec = wrapper::vloadq(dwc_bias_in + x); } auto dwc_bias_tmp_vec = wrapper::vmul(wrapper::vsub(dwc_bias_vec, mean_vec), wrapper::vinvsqrt(wrapper::vadd(var_vec, epsilon_vec))); dwc_bias_tmp_vec = wrapper::vadd(wrapper::vmul(dwc_bias_tmp_vec, gamma_vec), beta_vec); wrapper::vstore(dwc_bias_out + x, dwc_bias_tmp_vec); } auto dwc_w_in_ptr = reinterpret_cast(dwc_w_in.ptr()); auto dwc_w_out_ptr = reinterpret_cast(dwc_w_out.ptr()); auto wn = wrapper::vloadq(dwc_w_in_ptr + x); rvar_vec = wrapper::vinvsqrt(wrapper::vadd(var_vec, epsilon_vec)); wn = wrapper::vmul(wn, rvar_vec); wn = wrapper::vmul(wn, gamma_vec); // Store results wrapper::vstore(dwc_w_out_ptr + x, wn); } // Compute left-over elements for(; x < window_end_x; ++x) { auto var = input_var[x]; if(input_gamma != nullptr) { gamma = input_gamma[x]; } if(id[2] == 0 && id[1] == 0) { auto mean = input_mean[x]; if(input_beta != nullptr) { beta = input_beta[x]; } if(dwc_bias_in != nullptr) { dwc_bias_in_scalar = dwc_bias_in[x]; } auto dwc_bias_tmp_scalar = (dwc_bias_in_scalar - mean) / std::sqrt(var + ScalarType(epsilon)); dwc_bias_out[x] = (dwc_bias_tmp_scalar * gamma) + beta; } const auto dwc_w_in_ptr = reinterpret_cast(dwc_w_in.ptr()); auto dwc_w_out_ptr = reinterpret_cast(dwc_w_out.ptr()); *(dwc_w_out_ptr + x) = *(dwc_w_in_ptr + x) / std::sqrt(var + ScalarType(epsilon)) * gamma; } }, dwc_w_in, dwc_w_out); } template void fused_batch_normalization_dwc_nchw(const ITensor *dwc_weights, const ITensor *dwc_bias, ITensor *fused_weights, ITensor *fused_bias, const ITensor *bn_mean, const ITensor *bn_var, const ITensor *bn_beta, const ITensor *bn_gamma, float epsilon, const Window &window) { using ScalarType = typename VectorType::scalar_type; const int size = 16 / dwc_weights->info()->element_size(); using ExactTagType = typename VectorType::tag_type; const bool run_in_place_weights = (fused_weights == nullptr) || (fused_weights == dwc_weights); const bool run_in_place_bias = (fused_bias == nullptr) || (dwc_bias != nullptr && fused_bias == dwc_bias); // Set build options Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); const int window_step_x = size; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); Iterator dwc_w_in(dwc_weights, win); Iterator dwc_w_out(run_in_place_weights ? dwc_weights : fused_weights, win); const auto dwc_bias_in = (dwc_bias != nullptr ? reinterpret_cast(dwc_bias->ptr_to_element(Coordinates(0, 0))) : nullptr); auto dwc_bias_out = (run_in_place_bias ? dwc_bias_in : reinterpret_cast(fused_bias->ptr_to_element(Coordinates(0, 0)))); const auto input_mean = reinterpret_cast(bn_mean->ptr_to_element(Coordinates(0, 0))); const auto input_var = reinterpret_cast(bn_var->ptr_to_element(Coordinates(0, 0))); const auto input_gamma = (bn_gamma != nullptr) ? reinterpret_cast(bn_gamma->ptr_to_element(Coordinates(0, 0))) : nullptr; const auto input_beta = (bn_beta != nullptr) ? reinterpret_cast(bn_beta->ptr_to_element(Coordinates(0, 0))) : nullptr; auto mean_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{}); auto var_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{}); auto gamma_vec = wrapper::vdup_n(ScalarType(1), ExactTagType{}); auto beta_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{}); auto rvar_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{}); const auto epsilon_vec = wrapper::vdup_n(ScalarType(epsilon), ExactTagType{}); auto mean = ScalarType(0.0); auto var = ScalarType(0.0); auto gamma = ScalarType(1.0); auto beta = ScalarType(0.0); auto dwc_bias_in_scalar = ScalarType(0.0); execute_window_loop(win, [&](const Coordinates & id) { var = input_var[id[2]]; if(input_gamma != nullptr) { gamma = input_gamma[id[2]]; } if(id[1] == 0) { mean = input_mean[id[2]]; // Construct vectors mean_vec = wrapper::vdup_n(mean, ExactTagType{}); if(input_beta != nullptr) { beta = input_beta[id[2]]; beta_vec = wrapper::vdup_n(beta, ExactTagType{}); } if(dwc_bias_in != nullptr) { dwc_bias_in_scalar = dwc_bias_in[id[2]]; } auto dwc_bias_tmp_scalar = (dwc_bias_in_scalar - mean) / std::sqrt(var + ScalarType(epsilon)); dwc_bias_out[id[2]] = (dwc_bias_tmp_scalar * gamma) + beta; } int x = window_start_x; auto dwc_w_in_ptr = reinterpret_cast(dwc_w_in.ptr()); auto dwc_w_out_ptr = reinterpret_cast(dwc_w_out.ptr()); var_vec = wrapper::vdup_n(var, ExactTagType{}); gamma_vec = wrapper::vdup_n(gamma, ExactTagType{}); rvar_vec = wrapper::vinvsqrt(wrapper::vadd(var_vec, epsilon_vec)); for(; x <= (window_end_x - window_step_x); x += window_step_x) { auto wn = wrapper::vloadq(dwc_w_in_ptr + x); wn = wrapper::vmul(wn, rvar_vec); wn = wrapper::vmul(wn, gamma_vec); // Store results wrapper::vstore(dwc_w_out_ptr + x, wn); } // Compute left-over elements for(; x < window_end_x; ++x) { *(dwc_w_out_ptr + x) = *(dwc_w_in_ptr + x) / std::sqrt(var + ScalarType(epsilon)) * gamma; } }, dwc_w_in, dwc_w_out); } } // namespace NEFuseBatchNormalizationKernel::NEFuseBatchNormalizationKernel() : _input_weights(nullptr), _input_bias(nullptr), _bn_mean(nullptr), _bn_var(nullptr), _bn_gamma(nullptr), _bn_beta(nullptr), _fused_weights(nullptr), _fused_bias(nullptr), _epsilon(), _run_in_place_weights(false), _run_in_place_bias(false), _func(nullptr) { } void NEFuseBatchNormalizationKernel::configure(const ITensor *input_weights, const ITensor *bn_mean, const ITensor *bn_var, ITensor *fused_weights, ITensor *fused_bias, const ITensor *input_bias, const ITensor *bn_beta, const ITensor *bn_gamma, float epsilon, FuseBatchNormalizationType fbn_type) { ARM_COMPUTE_ERROR_ON_NULLPTR(input_weights, bn_mean, bn_var); _input_weights = input_weights; _input_bias = input_bias; _bn_mean = bn_mean; _bn_var = bn_var; _bn_beta = bn_beta; _bn_gamma = bn_gamma; _fused_weights = fused_weights; _fused_bias = fused_bias; _epsilon = epsilon; _run_in_place_weights = (fused_weights == nullptr) || (fused_weights == input_weights); _run_in_place_bias = (fused_bias == nullptr) || (input_bias != nullptr && fused_bias == input_bias); // Auto initialize outputs if(_fused_weights != nullptr) { // Output tensor auto initialization if not yet initialized auto_init_if_empty(*_fused_weights->info(), *_input_weights->info()->clone()); fused_weights->info()->set_valid_region(input_weights->info()->valid_region()); } if(_fused_bias != nullptr) { // Output tensor auto initialization if not yet initialized auto_init_if_empty(*_fused_bias->info(), *_bn_mean->info()->clone()); _fused_bias->info()->set_valid_region(bn_mean->info()->valid_region()); } // Validate arguments ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input_weights->info(), bn_mean->info(), bn_var->info(), (fused_weights != nullptr) ? fused_weights->info() : nullptr, (fused_bias != nullptr) ? fused_bias->info() : nullptr, (input_bias != nullptr) ? input_bias->info() : nullptr, (bn_beta != nullptr) ? bn_beta->info() : nullptr, (bn_gamma != nullptr) ? bn_gamma->info() : nullptr, epsilon, fbn_type)); // Configure kernel window Window win = calculate_max_window(*input_weights->info()); INEKernel::configure(win); // Configure function static std::map map_function = { { "fused_batch_normalization_conv_NHWC_F32", &fused_batch_normalization_conv> }, { "fused_batch_normalization_conv_NCHW_F32", &fused_batch_normalization_conv> }, { "fused_batch_normalization_dwc_NHWC_F32", &fused_batch_normalization_dwc_nhwc> }, { "fused_batch_normalization_dwc_NCHW_F32", &fused_batch_normalization_dwc_nchw> }, #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC { "fused_batch_normalization_conv_NHWC_F16", &fused_batch_normalization_conv> }, { "fused_batch_normalization_conv_NCHW_F16", &fused_batch_normalization_conv> }, { "fused_batch_normalization_dwc_NHWC_F16", &fused_batch_normalization_dwc_nhwc> }, { "fused_batch_normalization_dwc_NCHW_F16", &fused_batch_normalization_dwc_nchw> }, #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ }; std::string function_to_call("fused_batch_normalization_"); function_to_call += fbn_type == FuseBatchNormalizationType::CONVOLUTION ? "conv_" : "dwc_"; function_to_call += string_from_data_layout(_input_weights->info()->data_layout()); function_to_call += "_"; function_to_call += string_from_data_type(_input_weights->info()->data_type()); auto it = map_function.find(function_to_call); if(it != map_function.end()) { _func = it->second; } } Status NEFuseBatchNormalizationKernel::validate(const ITensorInfo *input_weights, const ITensorInfo *bn_mean, const ITensorInfo *bn_var, const ITensorInfo *fused_weights, const ITensorInfo *fused_bias, const ITensorInfo *input_bias, const ITensorInfo *bn_beta, const ITensorInfo *bn_gamma, float epsilon, FuseBatchNormalizationType fbn_type) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input_weights, bn_mean, bn_var, fused_weights, fused_bias, input_bias, bn_beta, bn_gamma, epsilon, fbn_type)); return Status{}; } void NEFuseBatchNormalizationKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window); (*_func)(_input_weights, _input_bias, _fused_weights, _fused_bias, _bn_mean, _bn_var, _bn_beta, _bn_gamma, _epsilon, window); } } // namespace arm_compute