/* * Copyright (c) 2018-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEFuseBatchNormalizationKernel.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Window.h" #include "support/ToolchainSupport.h" #include "arm_compute/core/NEON/wrapper/wrapper.h" #include "utils/TypePrinter.h" namespace arm_compute { namespace { Status validate_arguments(const ITensorInfo *conv_weights, const ITensorInfo *bn_mean, const ITensorInfo *bn_var, const ITensorInfo *fused_weights, const ITensorInfo *fused_bias, const ITensorInfo *conv_bias, const ITensorInfo *bn_beta, const ITensorInfo *bn_gamma, float epsilon) { ARM_COMPUTE_UNUSED(epsilon); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(conv_weights, 1, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(bn_mean, bn_var); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(conv_weights, bn_mean, bn_var); unsigned int kernels_idx = get_data_layout_dimension_index(conv_weights->data_layout(), DataLayoutDimension::BATCHES); ARM_COMPUTE_RETURN_ERROR_ON(conv_weights->dimension(kernels_idx) != bn_mean->dimension(0)); // Validate bias if(conv_bias != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(bn_mean, conv_bias); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(conv_weights, conv_bias); } // Validate beta if(bn_beta != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(bn_mean, bn_beta); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(conv_weights, bn_beta); } // Validate gamma if(bn_gamma != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(bn_mean, bn_gamma); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(conv_weights, bn_gamma); } // Validate output weights if(fused_weights != nullptr && fused_weights->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(conv_weights, fused_weights); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(conv_weights, fused_weights); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(conv_weights, fused_weights); } // Validate output bias if(fused_bias != nullptr && fused_bias->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(bn_mean, fused_bias); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(conv_weights, fused_bias); } return Status{}; } template void fused_batch_normmalization(const ITensor *conv_weights, const ITensor *conv_bias, ITensor *fused_weights, ITensor *fused_bias, const ITensor *bn_mean, const ITensor *bn_var, const ITensor *bn_beta, const ITensor *bn_gamma, float epsilon, const Window &window) { using ExactTagType = typename wrapper::traits::neon_vector::tag_type; const bool run_in_place_weights = (fused_weights == nullptr) || (fused_weights == conv_weights); const bool run_in_place_bias = (fused_bias == nullptr) || (conv_bias != nullptr && fused_bias == conv_bias); // Set build options Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); const int window_step_x = size; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); Iterator conv_w_in(conv_weights, win); Iterator conv_w_out(run_in_place_weights ? conv_weights : fused_weights, win); const auto conv_bias_in = (conv_bias != nullptr ? reinterpret_cast(conv_bias->ptr_to_element(Coordinates(0, 0))) : nullptr); auto conv_bias_out = (run_in_place_bias ? conv_bias_in : reinterpret_cast(fused_bias->ptr_to_element(Coordinates(0, 0)))); int slice = -1; const auto input_mean = reinterpret_cast(bn_mean->ptr_to_element(Coordinates(0, 0))); const auto input_var = reinterpret_cast(bn_var->ptr_to_element(Coordinates(0, 0))); const auto input_gamma = (bn_gamma != nullptr) ? reinterpret_cast(bn_gamma->ptr_to_element(Coordinates(0, 0))) : nullptr; const auto input_beta = (bn_beta != nullptr) ? reinterpret_cast(bn_beta->ptr_to_element(Coordinates(0, 0))) : nullptr; auto mean_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{}); auto var_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{}); auto gamma_vec = wrapper::vdup_n(ScalarType(1), ExactTagType{}); auto beta_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{}); auto rvar_vec = wrapper::vdup_n(ScalarType(0), ExactTagType{}); const auto epsilon_vec = wrapper::vdup_n(ScalarType(epsilon), ExactTagType{}); auto mean = ScalarType(0.0); auto var = ScalarType(0.0); auto gamma = ScalarType(1.0); auto beta = ScalarType(0.0); auto conv_bias_in_scalar = ScalarType(0.0); execute_window_loop(win, [&](const Coordinates & id) { if(slice != id[3]) { slice = id[3]; mean = input_mean[slice]; var = input_var[slice]; gamma = ScalarType(1.0); beta = ScalarType(0.0); // Construct vectors mean_vec = wrapper::vdup_n(mean, ExactTagType{}); var_vec = wrapper::vdup_n(var, ExactTagType{}); if(input_gamma != nullptr) { gamma = input_gamma[slice]; gamma_vec = wrapper::vdup_n(gamma, ExactTagType{}); } if(input_beta != nullptr) { beta = input_beta[slice]; beta_vec = wrapper::vdup_n(beta, ExactTagType{}); } if(conv_bias_in != nullptr) { conv_bias_in_scalar = conv_bias_in[slice]; } else { conv_bias_in_scalar = ScalarType(0); } conv_bias_in_scalar = (conv_bias_in_scalar - mean) / sqrt(var + ScalarType(epsilon)); conv_bias_in_scalar = (conv_bias_in_scalar * gamma) + beta; conv_bias_out[slice] = conv_bias_in_scalar; rvar_vec = wrapper::vinvsqrt(wrapper::vadd(var_vec, epsilon_vec)); } int x = window_start_x; auto conv_w_in_ptr = reinterpret_cast(conv_w_in.ptr()); auto conv_w_out_ptr = reinterpret_cast(conv_w_out.ptr()); for(; x <= (window_end_x - window_step_x); x += window_step_x) { auto wn = wrapper::vloadq(conv_w_in_ptr + x); wn = wrapper::vmul(wn, rvar_vec); wn = wrapper::vmul(wn, gamma_vec); // Store results wrapper::vstore(conv_w_out_ptr + x, wn); } // Compute left-over elements for(; x < window_end_x; ++x) { *(conv_w_out_ptr + x) = *(conv_w_in_ptr + x) / sqrt(var + ScalarType(epsilon)) * gamma; } }, conv_w_in, conv_w_out); } } // namespace NEFuseBatchNormalizationKernel::NEFuseBatchNormalizationKernel() : _conv_weights(nullptr), _conv_bias(nullptr), _bn_mean(nullptr), _bn_var(nullptr), _bn_gamma(nullptr), _bn_beta(nullptr), _fused_weights(nullptr), _fused_bias(nullptr), _epsilon(), _run_in_place_weights(false), _run_in_place_bias(false), _func(nullptr) { } void NEFuseBatchNormalizationKernel::configure(const ITensor *conv_weights, const ITensor *bn_mean, const ITensor *bn_var, ITensor *fused_weights, ITensor *fused_bias, const ITensor *conv_bias, const ITensor *bn_beta, const ITensor *bn_gamma, float epsilon) { ARM_COMPUTE_ERROR_ON_NULLPTR(conv_weights, bn_mean, bn_var); _conv_weights = conv_weights; _conv_bias = conv_bias; _bn_mean = bn_mean; _bn_var = bn_var; _bn_beta = bn_beta; _bn_gamma = bn_gamma; _fused_weights = fused_weights; _fused_bias = fused_bias; _epsilon = epsilon; _run_in_place_weights = (fused_weights == nullptr) || (fused_weights == conv_weights); _run_in_place_bias = (fused_bias == nullptr) || (conv_bias != nullptr && fused_bias == conv_bias); // Auto initialize outputs if(_fused_weights != nullptr) { // Output tensor auto initialization if not yet initialized auto_init_if_empty(*_fused_weights->info(), *_conv_weights->info()->clone()); fused_weights->info()->set_valid_region(conv_weights->info()->valid_region()); } if(_fused_bias != nullptr) { // Output tensor auto initialization if not yet initialized auto_init_if_empty(*_fused_bias->info(), *_bn_mean->info()->clone()); _fused_bias->info()->set_valid_region(bn_mean->info()->valid_region()); } // Validate arguments ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(conv_weights->info(), bn_mean->info(), bn_var->info(), (fused_weights != nullptr) ? fused_weights->info() : nullptr, (fused_bias != nullptr) ? fused_bias->info() : nullptr, (conv_bias != nullptr) ? conv_bias->info() : nullptr, (bn_beta != nullptr) ? bn_beta->info() : nullptr, (bn_gamma != nullptr) ? bn_gamma->info() : nullptr, epsilon)); // Configure kernel window Window win = calculate_max_window(*conv_weights->info()); INEKernel::configure(win); // Configure function to run based on different data types const DataType data_type = _conv_weights->info()->data_type(); switch(data_type) { case DataType::F32: _func = &fused_batch_normmalization; break; #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F16: _func = &fused_batch_normmalization; break; #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC default: ARM_COMPUTE_ERROR("Not Supported"); break; } } Status NEFuseBatchNormalizationKernel::validate(const ITensorInfo *conv_weights, const ITensorInfo *bn_mean, const ITensorInfo *bn_var, const ITensorInfo *fused_weights, const ITensorInfo *fused_bias, const ITensorInfo *conv_bias, const ITensorInfo *bn_beta, const ITensorInfo *bn_gamma, float epsilon) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(conv_weights, bn_mean, bn_var, fused_weights, fused_bias, conv_bias, bn_beta, bn_gamma, epsilon)); return Status{}; } void NEFuseBatchNormalizationKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window); (*_func)(_conv_weights, _conv_bias, _fused_weights, _fused_bias, _bn_mean, _bn_var, _bn_beta, _bn_gamma, _epsilon, window); } } // namespace arm_compute