/* * Copyright (c) 2018-2022 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/core/NEON/kernels/NEFuseBatchNormalizationKernel.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include "src/common/cpuinfo/CpuIsaInfo.h" #include "src/core/common/Registrars.h" #include "src/core/CPP/Validate.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/WindowHelpers.h" #include "src/core/NEON/wrapper/wrapper.h" #include "src/cpu/kernels/fuse_batch_normalization/list.h" #include namespace arm_compute { namespace { struct FuseBatchNormalizeSelectorData { DataType dt; DataLayout dl; FuseBatchNormalizationType fbn_type; cpuinfo::CpuIsaInfo isa; }; using FBNSelectorPtr = std::add_pointer::type; using FBNUKernelPtr = std::add_pointer::type; struct FBNUKernel { const char *name; const FBNSelectorPtr is_selected; FBNUKernelPtr ukernel; }; static const FBNUKernel available_kernels[] = { {"fused_batch_normalization_conv_NHWC_F16", [](const FuseBatchNormalizeSelectorData &data) { return data.dt == DataType::F16 && data.dl == DataLayout::NHWC && data.isa.fp16 && data.fbn_type == FuseBatchNormalizationType::CONVOLUTION; }, REGISTER_FP16_NEON(arm_compute::cpu::fused_batch_normalization_conv_f16)}, {"fused_batch_normalization_conv_NCHW_F16", [](const FuseBatchNormalizeSelectorData &data) { return data.dt == DataType::F16 && data.dl == DataLayout::NCHW && data.isa.fp16 && data.fbn_type == FuseBatchNormalizationType::CONVOLUTION; }, REGISTER_FP16_NEON(arm_compute::cpu::fused_batch_normalization_conv_f16)}, {"fused_batch_normalization_dwc_NHWC_F16", [](const FuseBatchNormalizeSelectorData &data) { return data.dt == DataType::F16 && data.dl == DataLayout::NHWC && data.isa.fp16 && data.fbn_type == FuseBatchNormalizationType::DEPTHWISECONVOLUTION; }, REGISTER_FP16_NEON(arm_compute::cpu::fused_batch_normalization_dwc_nhwc_f16)}, {"fused_batch_normalization_dwc_NCHW_F16", [](const FuseBatchNormalizeSelectorData &data) { return data.dt == DataType::F16 && data.dl == DataLayout::NCHW && data.isa.fp16 && data.fbn_type == FuseBatchNormalizationType::DEPTHWISECONVOLUTION; }, REGISTER_FP16_NEON(arm_compute::cpu::fused_batch_normalization_dwc_nchw_f16)}, {"fused_batch_normalization_conv_NHWC_F32", [](const FuseBatchNormalizeSelectorData &data) { return data.dt == DataType::F32 && data.dl == DataLayout::NHWC && data.fbn_type == FuseBatchNormalizationType::CONVOLUTION; }, REGISTER_FP32_NEON(arm_compute::cpu::fused_batch_normalization_conv_f32)}, {"fused_batch_normalization_conv_NCHW_F32", [](const FuseBatchNormalizeSelectorData &data) { return data.dt == DataType::F32 && data.dl == DataLayout::NCHW && data.fbn_type == FuseBatchNormalizationType::CONVOLUTION; }, REGISTER_FP32_NEON(arm_compute::cpu::fused_batch_normalization_conv_f32)}, {"fused_batch_normalization_dwc_NHWC_F32", [](const FuseBatchNormalizeSelectorData &data) { return data.dt == DataType::F32 && data.dl == DataLayout::NHWC && data.fbn_type == FuseBatchNormalizationType::DEPTHWISECONVOLUTION; }, REGISTER_FP32_NEON(arm_compute::cpu::fused_batch_normalization_dwc_nhwc_f32)}, {"fused_batch_normalization_dwc_NCHW_F32", [](const FuseBatchNormalizeSelectorData &data) { return data.dt == DataType::F32 && data.dl == DataLayout::NCHW && data.fbn_type == FuseBatchNormalizationType::DEPTHWISECONVOLUTION; }, REGISTER_FP32_NEON(arm_compute::cpu::fused_batch_normalization_dwc_nchw_f32)}}; /** Micro-kernel selector * * @param[in] data Selection data passed to help pick the appropriate micro-kernel * * @param[in] * * @return A matching micro-kernel else nullptr */ const FBNUKernel *get_implementation(const FuseBatchNormalizeSelectorData &data) { for (const auto &uk : available_kernels) { if (uk.is_selected(data)) { return &uk; } } return nullptr; } Status validate_arguments(const ITensorInfo *input_weights, const ITensorInfo *bn_mean, const ITensorInfo *bn_var, const ITensorInfo *fused_weights, const ITensorInfo *fused_bias, const ITensorInfo *input_bias, const ITensorInfo *bn_beta, const ITensorInfo *bn_gamma, float epsilon, FuseBatchNormalizationType fbn_type) { ARM_COMPUTE_UNUSED(epsilon); ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input_weights, bn_mean, bn_var); ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input_weights); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input_weights, 1, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(bn_mean, bn_var); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_weights, bn_mean, bn_var); ARM_COMPUTE_RETURN_ERROR_ON(input_bias == nullptr && fused_bias == nullptr); ARM_COMPUTE_RETURN_ERROR_ON(bn_mean->num_dimensions() > 1); if (fbn_type == FuseBatchNormalizationType::CONVOLUTION) { ARM_COMPUTE_RETURN_ERROR_ON(input_weights->dimension(3) != bn_mean->dimension(0)); } else { const size_t channel_idx = get_data_layout_dimension_index(input_weights->data_layout(), DataLayoutDimension::CHANNEL); ARM_COMPUTE_RETURN_ERROR_ON(input_weights->dimension(channel_idx) != bn_mean->dimension(0)); } // Validate bias if (input_bias != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(bn_mean, input_bias); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_weights, input_bias); } // Validate beta if (bn_beta != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(bn_mean, bn_beta); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_weights, bn_beta); } // Validate gamma if (bn_gamma != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(bn_mean, bn_gamma); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_weights, bn_gamma); } // Validate output weights if (fused_weights != nullptr && fused_weights->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input_weights, fused_weights); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input_weights, fused_weights); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_weights, fused_weights); } // Validate output bias if (fused_bias != nullptr && fused_bias->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(bn_mean, fused_bias); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_weights, fused_bias); } return Status{}; } } // namespace NEFuseBatchNormalizationKernel::NEFuseBatchNormalizationKernel() : _input_weights(nullptr), _input_bias(nullptr), _bn_mean(nullptr), _bn_var(nullptr), _bn_gamma(nullptr), _bn_beta(nullptr), _fused_weights(nullptr), _fused_bias(nullptr), _epsilon(), _run_in_place_weights(false), _run_in_place_bias(false), _func(nullptr) { } void NEFuseBatchNormalizationKernel::configure(const ITensor *input_weights, const ITensor *bn_mean, const ITensor *bn_var, ITensor *fused_weights, ITensor *fused_bias, const ITensor *input_bias, const ITensor *bn_beta, const ITensor *bn_gamma, float epsilon, FuseBatchNormalizationType fbn_type) { ARM_COMPUTE_ERROR_ON_NULLPTR(input_weights, bn_mean, bn_var); _input_weights = input_weights; _input_bias = input_bias; _bn_mean = bn_mean; _bn_var = bn_var; _bn_beta = bn_beta; _bn_gamma = bn_gamma; _fused_weights = fused_weights; _fused_bias = fused_bias; _epsilon = epsilon; _run_in_place_weights = (fused_weights == nullptr) || (fused_weights == input_weights); _run_in_place_bias = (fused_bias == nullptr) || (input_bias != nullptr && fused_bias == input_bias); // Auto initialize outputs if (_fused_weights != nullptr) { // Output tensor auto initialization if not yet initialized auto_init_if_empty(*_fused_weights->info(), *_input_weights->info()->clone()); } if (_fused_bias != nullptr) { // Output tensor auto initialization if not yet initialized auto_init_if_empty(*_fused_bias->info(), *_bn_mean->info()->clone()); } // Validate arguments ARM_COMPUTE_ERROR_THROW_ON(validate_arguments( input_weights->info(), bn_mean->info(), bn_var->info(), (fused_weights != nullptr) ? fused_weights->info() : nullptr, (fused_bias != nullptr) ? fused_bias->info() : nullptr, (input_bias != nullptr) ? input_bias->info() : nullptr, (bn_beta != nullptr) ? bn_beta->info() : nullptr, (bn_gamma != nullptr) ? bn_gamma->info() : nullptr, epsilon, fbn_type)); const auto *uk = get_implementation(FuseBatchNormalizeSelectorData{ input_weights->info()->data_type(), input_weights->info()->data_layout(), fbn_type, CPUInfo::get().get_isa()}); ARM_COMPUTE_ERROR_ON_NULLPTR(uk); ARM_COMPUTE_ERROR_ON(uk->ukernel == nullptr); _func = uk->ukernel; // Configure kernel window Window win = calculate_max_window(*input_weights->info()); INEKernel::configure(win); } Status NEFuseBatchNormalizationKernel::validate(const ITensorInfo *input_weights, const ITensorInfo *bn_mean, const ITensorInfo *bn_var, const ITensorInfo *fused_weights, const ITensorInfo *fused_bias, const ITensorInfo *input_bias, const ITensorInfo *bn_beta, const ITensorInfo *bn_gamma, float epsilon, FuseBatchNormalizationType fbn_type) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input_weights, bn_mean, bn_var, fused_weights, fused_bias, input_bias, bn_beta, bn_gamma, epsilon, fbn_type)); return Status{}; } void NEFuseBatchNormalizationKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window); ARM_COMPUTE_ERROR_ON(_func == nullptr); (*_func)(_input_weights, _input_bias, _fused_weights, _fused_bias, _bn_mean, _bn_var, _bn_beta, _bn_gamma, _epsilon, window); } } // namespace arm_compute