/* * Copyright (c) 2016-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEFastCornersKernel.h" #include "arm_compute/core/Coordinates.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/Validate.h" #include #include #include #include using namespace arm_compute; NEFastCornersKernel::NEFastCornersKernel() : INEKernel(), _input(nullptr), _output(nullptr), _threshold(0), _non_max_suppression(false) { } namespace { constexpr size_t PERMUTATIONS = 16; constexpr size_t PERM_SIZE = 16; inline uint8x8x2_t create_permutation_index(size_t k) { ARM_COMPUTE_ERROR_ON(k >= PERMUTATIONS); static const std::array, PERM_SIZE> permutations_table{ { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 255, 255, 255, 255, 255, 255, 255 }, { 15, 0, 1, 2, 3, 4, 5, 6, 7, 255, 255, 255, 255, 255, 255, 255 }, { 14, 15, 0, 1, 2, 3, 4, 5, 6, 255, 255, 255, 255, 255, 255, 255 }, { 13, 14, 15, 0, 1, 2, 3, 4, 5, 255, 255, 255, 255, 255, 255, 255 }, { 12, 13, 14, 15, 0, 1, 2, 3, 4, 255, 255, 255, 255, 255, 255, 255 }, { 11, 12, 13, 14, 15, 0, 1, 2, 3, 255, 255, 255, 255, 255, 255, 255 }, { 10, 11, 12, 13, 14, 15, 0, 1, 2, 255, 255, 255, 255, 255, 255, 255 }, { 9, 10, 11, 12, 13, 14, 15, 0, 1, 255, 255, 255, 255, 255, 255, 255 }, { 8, 9, 10, 11, 12, 13, 14, 15, 0, 255, 255, 255, 255, 255, 255, 255 }, { 7, 8, 9, 10, 11, 12, 13, 14, 15, 255, 255, 255, 255, 255, 255, 255 }, { 6, 7, 8, 9, 10, 11, 12, 13, 14, 255, 255, 255, 255, 255, 255, 255 }, { 5, 6, 7, 8, 9, 10, 11, 12, 13, 255, 255, 255, 255, 255, 255, 255 }, { 4, 5, 6, 7, 8, 9, 10, 11, 12, 255, 255, 255, 255, 255, 255, 255 }, { 3, 4, 5, 6, 7, 8, 9, 10, 11, 255, 255, 255, 255, 255, 255, 255 }, { 2, 3, 4, 5, 6, 7, 8, 9, 10, 255, 255, 255, 255, 255, 255, 255 }, { 1, 2, 3, 4, 5, 6, 7, 8, 9, 255, 255, 255, 255, 255, 255, 255 } } }; const uint8x8x2_t index = { { vld1_u8(permutations_table[k].data()), vld1_u8(permutations_table[k].data() + 8) } }; return index; } inline uint8x8x4_t create_circle_index_register() { /* This function creates the index registers to retrieve the 16 texels in the Bresenham circle of radius 3 with center in P. . . F 0 1 . . . . E . . . 2 . . D . . . . . 3 . C . . P . . 4 . B . . . . . 5 . . A . . . 6 . . . . 9 8 7 . . . Where . is an irrelevant texel value We want to retrieve all texels [0,F] The 4 registers in r will then be used to get these texels out of two tables in the function get_circle_texels() The first table holds the top 4 rows of texels . . F 0 1 . . . . E . . . 2 . . D . . . . . 3 . C . . P . . 4 . The second table the bottom 3 rows of texels B . . . . . 5 . . A . . . 6 . . . . 9 8 7 . . . */ static const std::array top_right = { /* The register r.val[0] will be used to retrieve these texels: . . . 0 1 . . . . . . . . 2 . . . . . . . . 3 . . . . . . . 4 . */ 3 /* top table, first row, elem 4, value 0 in the diagram above */, 4 /* top table, first row, elem 5, value 1 in the diagram above */, 13 /* top table, second row, elem 6, value 2 in the diagram above */, 22 /* top table, third row, elem 7, value 3 in the diagram above*/, 30 /* top table, fourth row, elem 7, value 4 in the diagram above*/, 255, 255, 255 }; static const std::array bottom_right = { /* The register r.val[1] will be used to retrieve these texels: . . . . . . 5 . . . . . . 6 . . . . . . 7 . . . */ 255, 255, 255, 255, 255, 6 /* low table, first row, elem 7, value 5 in the diagram above*/, 13 /* low table, second row, elem 6, value 6 in the diagram above*/, 20 /* low table, third row, elem 5, value 7 in the diagram above*/ }; static const std::array top_left = { /* The register r.val[2] will be used to retrieve these texels: . . F . . . . . . E . . . . . . D . . . . . . . C . . . . . . . */ 255, 255, 255, 255, 24 /* top table, fourth row, elem 1, value C in the diagram above */, 16 /* top table, third row, elem 1, value D in the diagram above*/, 9 /* top table, second row, elem 2, value E in the diagram above*/, 2 /* top table, first row, elem 3, value F in the diagram above*/ }; static const std::array bottom_left = { /* The register r.val[3] will be used to retrieve these texels: B . . . . . . . . A . . . . . . . . 9 8 . . . . */ 19 /* low table, third row, elem 4, value 8 in the diagram above */, 18 /* low table, third row, elem 3, value 9 in the diagram above */, 9 /* low table, second row, elem 2, value A in the diagram above */, 0 /* low table, first row, elem 1, value B in the diagram above */, 255, 255, 255, 255 }; const uint8x8x4_t reg = { { vld1_u8(top_right.data()), vld1_u8(bottom_right.data()), vld1_u8(top_left.data()), vld1_u8(bottom_left.data()) } }; return reg; } inline uint8x16_t get_circle_texels(const uint8x8x4_t &index, const uint8x8x4_t &tbl_hi, const uint8x8x3_t &tbl_lo) { /* This function loads the 16 texels in the Bresenham circle of radius 3 into the register 'texels'. The parameter 'index' is an array of indices which was previously setup in setup_circle_index_register(). tbl_hi and tbl_lo are the two tables holding the texels in the window [(-3,-3),(+3,+3)] for a given texel P */ return vcombine_u8(vtbx3_u8(vtbl4_u8(tbl_hi, index.val[0]), tbl_lo, index.val[1]), vtbx3_u8(vtbl4_u8(tbl_hi, index.val[2]), tbl_lo, index.val[3])); } inline uint8x16_t get_permutation_texels(const uint8x8x2_t &permutation_index, const uint8x8x2_t &tbl_circle) { /* This function stores the 9 texels of a give permutation X in the neon register 'texels' 'tbl_circle' is a LUT with the texels 0 to F . . F 0 1 . . . . E . . . 2 . . D . . . . . 3 . C . . P . . 4 . B . . . . . 5 . . A . . . 6 . . . . 9 8 7 . . . 'permutation_index' is one of the permutations below: { 0, 1, 2, 3, 4, 5, 6, 7, 8}, { F, 0, 1, 2, 3, 4, 5, 6, 7}, { E, F, 0, 1, 2, 3, 4, 5, 6}, { D, E, F, 0, 1, 2, 3, 4, 5}, { C, D, E, F, 0, 1, 2, 3, 4}, { B, C, D, E, F, 0, 1, 2, 3}, { A, B, C, D, E, F, 0, 1, 2}, { 9, A, B, C, D, E, F, 0, 1}, { 8, 9, A, B, C, D, E, F, 0}, { 7, 8, 9, A, B, C, D, E, F}, { 6, 7, 8, 9, A, B, C, D, E}, { 5, 6, 7, 8, 9, A, B, C, D}, { 4, 5, 6, 7, 8, 9, A, B, C}, { 3, 4, 5, 6, 7, 8, 9, A, B}, { 2, 3, 4, 5, 6, 7, 8, 9, A}, { 1, 2, 3, 4, 5, 6, 7, 8, 9}, */ static const uint8x8_t perm_right = vdup_n_u8(255); // init to 255 so that vtbx preserves the original values of the lanes return vcombine_u8(vtbl2_u8(tbl_circle, permutation_index.val[0]), vtbx2_u8(perm_right, tbl_circle, permutation_index.val[1])); } inline bool is_permutation_brighter(const uint8x16_t &permutation, const uint8x16_t &pg) { const uint8x16_t res_gt = vcgtq_u8(permutation, pg); return vget_lane_u64(vreinterpret_u64_u8(vand_u8(vget_high_u8(res_gt), vget_low_u8(res_gt))), 0) == std::numeric_limits::max(); } inline bool is_permutation_darker(const uint8x16_t &permutation, const uint8x16_t &pl) { const uint8x16_t res_lt = vcltq_u8(permutation, pl); const uint64x2_t u64res_lt = vreinterpretq_u64_u8(res_lt); const uint64_t t3 = vgetq_lane_u64(u64res_lt, 0); const uint64_t t4 = vgetq_lane_u64(u64res_lt, 1); return std::numeric_limits::max() == t3 && 255 == t4; } inline bool is_permutation_corner(const uint8x16_t &permutation, const uint8x16_t &pg, const uint8x16_t &pl) { return is_permutation_brighter(permutation, pg) || is_permutation_darker(permutation, pl); } inline bool point_is_fast_corner(uint8_t p, uint8_t threshold, const uint8x8x2_t &tbl_circle_texels, std::array &perm_indices) { /* This function determines whether the point 'p' is a corner. */ uint8x16_t pg = vqaddq_u8(vdupq_n_u8(p), vdupq_n_u8(threshold)); uint8x16_t pl = vqsubq_u8(vdupq_n_u8(p), vdupq_n_u8(threshold)); bool corner_detected = false; for(size_t j = 0; !corner_detected && j < PERMUTATIONS; ++j) { const uint8x16_t pe_texels = get_permutation_texels(perm_indices[j], tbl_circle_texels); corner_detected = is_permutation_corner(pe_texels, pg, pl); } return corner_detected; } inline uint8x8x2_t create_circle_tbl(const std::array &buffer, size_t in_offset, const uint8x8x4_t &circle_index_r) { /* This function builds a LUT holding the 16 texels in the Brensenham circle radius 3. circle_index_r is a vector of 4 registers to retrieve the texels from the two tables mentioned above. */ //Load the texels in the window [(x-3,y-3),(x+3,y+3)]. //The top 4 rows are loaded in tbl_hi and the low 3 rows in tbl_lo. //These two tables are then used to retrieve the texels in the Bresenham circle of radius 3. const uint8x8x4_t tbl_window_hi = { { vld1_u8(buffer[0] + in_offset), vld1_u8(buffer[1] + in_offset), vld1_u8(buffer[2] + in_offset), vld1_u8(buffer[3] + in_offset) } }; const uint8x8x3_t tbl_window_lo = { { vld1_u8(buffer[4] + in_offset), vld1_u8(buffer[5] + in_offset), vld1_u8(buffer[6] + in_offset) } }; const uint8x16_t circle_texels = get_circle_texels(circle_index_r, tbl_window_hi, tbl_window_lo); const uint8x8x2_t tbl_circle_texels = { { vget_low_u8(circle_texels), vget_high_u8(circle_texels) } }; return tbl_circle_texels; } inline uint8_t get_point_score(uint8_t p, uint8_t tolerance, const uint8x8x2_t &tbl_circle, std::array &perm_indices) { uint8_t b = 255; uint8_t a = tolerance; while(b - a > 1) { const uint16_t ab = a + b; const uint8_t c = ab >> 1; if(point_is_fast_corner(p, c, tbl_circle, perm_indices)) { a = c; } else { b = c; } } return a; } } // namespace BorderSize NEFastCornersKernel::border_size() const { return BorderSize(3); } void NEFastCornersKernel::configure(const IImage *input, IImage *output, uint8_t threshold, bool non_max_suppression, bool border_undefined) { ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(input); ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(output); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::U8); ARM_COMPUTE_ERROR_ON_MSG(border_undefined == false, "Not implemented"); _input = input; _output = output; _threshold = threshold; _non_max_suppression = non_max_suppression; constexpr unsigned int num_elems_processed_per_iteration = 1; constexpr unsigned int num_elems_read_per_iteration = 8; constexpr unsigned int num_elems_written_per_iteration = 1; constexpr unsigned int num_rows_read_per_iteration = 7; // Configure kernel window Window win = calculate_max_window(*input->info(), Steps(num_elems_processed_per_iteration), border_undefined, border_size()); AccessWindowHorizontal output_access(output->info(), 0, num_elems_written_per_iteration); AccessWindowRectangle input_access(input->info(), -border_size().left, -border_size().top, num_elems_read_per_iteration, num_rows_read_per_iteration); update_window_and_padding(win, input_access, output_access); output_access.set_valid_region(win, input->info()->valid_region(), border_undefined, border_size()); INEKernel::configure(win); } void NEFastCornersKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); std::array perm_index{ {} }; /* We use a LUT loaded with 7 rows of uint8_t from the input image [-3,-3]...[+3,+3] to retrieve the texels in the Brensenham circle radius 3 and put them in one neon register uint8x16_t. The three lines below setup the neon index registers to get these texels out from the table */ const uint8x8x4_t circle_index_r = create_circle_index_register(); /* We put the 16 texels (circle) in a LUT to easily generate all the permutations. The for block below setups the indices for each permutation. */ for(size_t k = 0; k < PERMUTATIONS; ++k) { perm_index[k] = create_permutation_index(k); } Iterator in(_input, window); Iterator out(_output, window); const std::array in_row { _input->ptr_to_element(Coordinates(-3, -3)), _input->ptr_to_element(Coordinates(-3, -2)), _input->ptr_to_element(Coordinates(-3, -1)), _input->ptr_to_element(Coordinates(-3, 0)), _input->ptr_to_element(Coordinates(-3, 1)), _input->ptr_to_element(Coordinates(-3, 2)), _input->ptr_to_element(Coordinates(-3, 3)) }; auto is_rejected = [](uint8_t p, uint8_t q, uint8_t a, uint8_t b) { const bool p_is_in_ab = (a <= p) && (p <= b); const bool q_is_in_ab = (a <= q) && (q <= b); return p_is_in_ab && q_is_in_ab; }; execute_window_loop(window, [&](const Coordinates &) { const size_t in_offset = in.offset(); const uint8_t p0 = *in.ptr(); const uint8_t b = std::min(p0 + _threshold, 255); const uint8_t a = std::max(p0 - _threshold, 0); uint8_t score = 0; /* Fast check to discard points which cannot be corners and avoid the expensive computation of the potential 16 permutations pixels 1 and 9 are examined, if both I1 and I9 are within [Ip - t, Ip + t], then candidate p is not a corner. */ const uint8_t p1 = (in_offset + in_row[0])[3]; const uint8_t p9 = (in_offset + in_row[6])[3]; if(!is_rejected(p1, p9, a, b)) { /* pixels 5 and 13 are further examined to check whether three of them are brighter than Ip + t or darker than Ip - t */ const uint8_t p5 = (in_offset + in_row[3])[6]; const uint8_t p13 = (in_offset + in_row[3])[0]; if(!is_rejected(p5, p13, a, b)) { /* at this stage we use the full test with the 16 permutations to classify the point as corner or not */ const uint8x8x2_t tbl_circle_texel = create_circle_tbl(in_row, in_offset, circle_index_r); if(point_is_fast_corner(p0, _threshold, tbl_circle_texel, perm_index)) { if(_non_max_suppression) { score = get_point_score(p0, _threshold, tbl_circle_texel, perm_index); } else { score = 1; } } } } *out.ptr() = score; }, in, out); }