/* * Copyright (c) 2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEFFTDigitReverseKernel.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include namespace arm_compute { namespace { Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const ITensorInfo *idx, const FFTDigitReverseKernelInfo &config) { ARM_COMPUTE_RETURN_ERROR_ON(input->data_type() != DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON(input->num_channels() > 2); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(idx, 1, DataType::U32); ARM_COMPUTE_RETURN_ERROR_ON(std::set({ 0, 1 }).count(config.axis) == 0); ARM_COMPUTE_RETURN_ERROR_ON(input->tensor_shape()[config.axis] != idx->tensor_shape().x()); // Checks performed when output is configured if((output != nullptr) && (output->total_size() != 0)) { ARM_COMPUTE_RETURN_ERROR_ON(output->num_channels() != 2); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); } return Status{}; } std::pair validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, ITensorInfo *idx, const FFTDigitReverseKernelInfo &config) { ARM_COMPUTE_UNUSED(idx, config); auto_init_if_empty(*output, input->clone()->set_num_channels(2)); Window win = calculate_max_window(*input, Steps()); input->set_valid_region(ValidRegion(Coordinates(), input->tensor_shape())); return std::make_pair(Status{}, win); } } // namespace NEFFTDigitReverseKernel::NEFFTDigitReverseKernel() : _func(nullptr), _input(nullptr), _output(nullptr), _idx(nullptr) { } void NEFFTDigitReverseKernel::configure(const ITensor *input, ITensor *output, const ITensor *idx, const FFTDigitReverseKernelInfo &config) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output, idx); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), idx->info(), config)); _input = input; _output = output; _idx = idx; const size_t axis = config.axis; const bool is_conj = config.conjugate; const bool is_input_complex = (input->info()->num_channels() == 2); // Configure kernel window auto win_config = validate_and_configure_window(input->info(), output->info(), idx->info(), config); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); INEKernel::configure(win_config.second); if(axis == 0) { if(is_input_complex) { if(is_conj) { _func = &NEFFTDigitReverseKernel::digit_reverse_kernel_axis_0; } else { _func = &NEFFTDigitReverseKernel::digit_reverse_kernel_axis_0; } } else { _func = &NEFFTDigitReverseKernel::digit_reverse_kernel_axis_0; } } else if(axis == 1) { if(is_input_complex) { if(is_conj) { _func = &NEFFTDigitReverseKernel::digit_reverse_kernel_axis_1; } else { _func = &NEFFTDigitReverseKernel::digit_reverse_kernel_axis_1; } } else { _func = &NEFFTDigitReverseKernel::digit_reverse_kernel_axis_1; } } else { ARM_COMPUTE_ERROR("Not supported"); } } Status NEFFTDigitReverseKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const ITensorInfo *idx, const FFTDigitReverseKernelInfo &config) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, idx, config)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get(), idx->clone().get(), config).first); return Status{}; } template void NEFFTDigitReverseKernel::digit_reverse_kernel_axis_0(const Window &window) { const size_t N = _input->info()->dimension(0); // Copy the look-up buffer to a local array std::vector buffer_idx(N); std::copy_n(reinterpret_cast(_idx->buffer()), N, buffer_idx.data()); // Input/output iterators Window slice = window; slice.set(0, Window::DimX); Iterator in(_input, slice); Iterator out(_output, slice); // Row buffers std::vector buffer_row_out(2 * N); std::vector buffer_row_in(2 * N); execute_window_loop(slice, [&](const Coordinates &) { if(is_input_complex) { // Load memcpy(buffer_row_in.data(), reinterpret_cast(in.ptr()), 2 * N * sizeof(float)); // Shuffle for(size_t x = 0; x < 2 * N; x += 2) { size_t idx = buffer_idx[x / 2]; buffer_row_out[x] = buffer_row_in[2 * idx]; buffer_row_out[x + 1] = (is_conj ? -buffer_row_in[2 * idx + 1] : buffer_row_in[2 * idx + 1]); } } else { // Load memcpy(buffer_row_in.data(), reinterpret_cast(in.ptr()), N * sizeof(float)); // Shuffle for(size_t x = 0; x < N; ++x) { size_t idx = buffer_idx[x]; buffer_row_out[2 * x] = buffer_row_in[idx]; } } // Copy back memcpy(reinterpret_cast(out.ptr()), buffer_row_out.data(), 2 * N * sizeof(float)); }, in, out); } template void NEFFTDigitReverseKernel::digit_reverse_kernel_axis_1(const Window &window) { const size_t Nx = _input->info()->dimension(0); const size_t Ny = _input->info()->dimension(1); // Copy the look-up buffer to a local array std::vector buffer_idx(Ny); std::copy_n(reinterpret_cast(_idx->buffer()), Ny, buffer_idx.data()); // Output iterator Window slice = window; slice.set(0, Window::DimX); Iterator out(_output, slice); // Row buffer std::vector buffer_row(Nx); // Strides const size_t stride_z = _input->info()->strides_in_bytes()[2]; const size_t stride_w = _input->info()->strides_in_bytes()[3]; execute_window_loop(slice, [&](const Coordinates & id) { auto *out_ptr = reinterpret_cast(out.ptr()); auto *in_ptr = reinterpret_cast(_input->buffer() + id.z() * stride_z + id[3] * stride_w); const size_t y_shuffled = buffer_idx[id.y()]; if(is_input_complex) { // Shuffle the entire row into the output memcpy(out_ptr, in_ptr + 2 * Nx * y_shuffled, 2 * Nx * sizeof(float)); // Conjugate if necessary if(is_conj) { for(size_t x = 0; x < 2 * Nx; x += 2) { out_ptr[x + 1] = -out_ptr[x + 1]; } } } else { // Shuffle the entire row into the buffer memcpy(buffer_row.data(), in_ptr + Nx * y_shuffled, Nx * sizeof(float)); // Copy the buffer to the output, with a zero imaginary part for(size_t x = 0; x < 2 * Nx; x += 2) { out_ptr[x] = buffer_row[x / 2]; } } }, out); } void NEFFTDigitReverseKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); ARM_COMPUTE_UNUSED(info); (this->*_func)(window); } } // namespace arm_compute