/* * Copyright (c) 2018-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEElementwiseUnaryKernel.h" #include "arm_compute/core/CPP/Validate.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/IAccessWindow.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/NEON/NEAsymm.h" #include "arm_compute/core/NEON/NEFixedPoint.h" #include "arm_compute/core/NEON/NEMath.h" #include "arm_compute/core/NEON/wrapper/wrapper.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Validate.h" #include "support/ToolchainSupport.h" #include #include #include #include #include namespace arm_compute { class Coordinates; namespace { template inline ScalarType elementwise_op_scalar(const ScalarType &a) { switch(op) { case ElementWiseUnary::RSQRT: return 1 / sqrt(a); case ElementWiseUnary::EXP: return std::exp(a); case ElementWiseUnary::NEG: return -a; case ElementWiseUnary::LOG: return std::log(a); case ElementWiseUnary::ABS: return std::abs(a); case ElementWiseUnary::ROUND: return support::cpp11::nearbyint(a); case ElementWiseUnary::SIN: return std::sin(a); default: ARM_COMPUTE_ERROR("NOT_SUPPORTED!"); } } /* Elementwise operations that are supported for float */ template ::type = 0> inline VectorType elementwise_op(const VectorType &a) { switch(op) { case ElementWiseUnary::RSQRT: return wrapper::vinvsqrt(a); case ElementWiseUnary::EXP: return wrapper::vexpq(a); case ElementWiseUnary::NEG: return wrapper::vneg(a); case ElementWiseUnary::LOG: return wrapper::vlog(a); case ElementWiseUnary::ABS: return wrapper::vabs(a); case ElementWiseUnary::ROUND: return wrapper::vround(a); case ElementWiseUnary::SIN: return wrapper::vsin(a); default: ARM_COMPUTE_ERROR("NOT_SUPPORTED!"); } } /* Elementwise operations that are supported for non floats */ template < ElementWiseUnary op, typename ScalarType, bool is_float, typename VectorType, typename std::enable_if < !is_float, int >::type = 0 > inline VectorType elementwise_op(const VectorType &a) { switch(op) { case ElementWiseUnary::NEG: return wrapper::vneg(a); case ElementWiseUnary::ABS: return wrapper::vabs(a); default: ARM_COMPUTE_ERROR("NOT_SUPPORTED!"); } } template void elementwise_op(const ITensor *in, ITensor *out, const Window &window) { const int window_step_x = 16 / sizeof(ScalarType); const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input(in, win); Iterator output(out, win); execute_window_loop(win, [&](const Coordinates &) { auto output_ptr = reinterpret_cast(output.ptr()); const auto input_ptr = reinterpret_cast(input.ptr()); int x = window_start_x; for(; x <= window_end_x - window_step_x; x += window_step_x) { wrapper::vstore(output_ptr + x, elementwise_op(wrapper::vloadq(input_ptr + x))); } for(; x < window_end_x; ++x) { *(output_ptr + x) = elementwise_op_scalar(*(input_ptr + x)); } }, input, output); } template std::function configure_func(const ITensor *input, ITensor *output) { std::string function_to_call("op_"); function_to_call += string_from_data_type(input->info()->data_type()) + "_"; function_to_call += string_from_data_type(output->info()->data_type()); static std::map map_function = { { "op_F32_F32", &elementwise_op }, { "op_S32_S32", &elementwise_op }, }; #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC map_function["op_F16_F16"] = &elementwise_op; #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ auto it = map_function.find(function_to_call); if(it != map_function.end()) { auto func = it->second; return [func](const ITensor * input, ITensor * output, const Window & window) { func(input, output, window); }; } return nullptr; } } // namespace NEElementwiseUnaryKernel::NEElementwiseUnaryKernel() : _function(nullptr), _input(nullptr), _output(nullptr) { } void NEElementwiseUnaryKernel::configure(ElementWiseUnary op, const ITensor *input, ITensor *output) { ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(op, *input->info(), *output->info())); ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); // Configure kernel window const std::pair broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(*input->info()); const TensorShape &out_shape = broadcast_pair.first; const ValidRegion &valid_region = broadcast_pair.second; // Auto initialize output if not initialized auto_init_if_empty(*output->info(), out_shape, 1, input->info()->data_type()); Window win = calculate_max_window(valid_region); _input = input; _output = output; INEKernel::configure(win); switch(op) { case ElementWiseUnary::RSQRT: _function = configure_func(input, output); break; case ElementWiseUnary::EXP: _function = configure_func(input, output); break; case ElementWiseUnary::NEG: _function = configure_func(input, output); break; case ElementWiseUnary::LOG: _function = configure_func(input, output); break; case ElementWiseUnary::ABS: _function = configure_func(input, output); break; case ElementWiseUnary::ROUND: _function = configure_func(input, output); break; case ElementWiseUnary::SIN: _function = configure_func(input, output); break; default: ARM_COMPUTE_ERROR("NOT_SUPPORTED!"); } } Status NEElementwiseUnaryKernel::validate_arguments(ElementWiseUnary op, const ITensorInfo &input, const ITensorInfo &output) { ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&input); switch(op) { case ElementWiseUnary::EXP: case ElementWiseUnary::RSQRT: case ElementWiseUnary::LOG: case ElementWiseUnary::ROUND: case ElementWiseUnary::SIN: ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input, 1, DataType::F16, DataType::F32); break; case ElementWiseUnary::NEG: case ElementWiseUnary::ABS: ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input, 1, DataType::F16, DataType::F32, DataType::S32); break; default: ARM_COMPUTE_ERROR("ElementWiseUnary operation not supported"); } // Validate in case of configured output if(output.total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input, &output); } return Status{}; } Status NEElementwiseUnaryKernel::validate(ElementWiseUnary op, const ITensorInfo *input, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(op, *input, *output)); return Status{}; } void NEElementwiseUnaryKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); ARM_COMPUTE_ERROR_ON(_function == nullptr); _function(_input, _output, window); } } // namespace arm_compute