/* * Copyright (c) 2018-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEElementwiseOperationKernel.h" #include "arm_compute/core/CPP/Validate.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/IAccessWindow.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/NEON/NEAsymm.h" #include "arm_compute/core/NEON/NEFixedPoint.h" #include "arm_compute/core/NEON/wrapper/wrapper.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Validate.h" #include #include #include #include #include namespace arm_compute { class Coordinates; namespace { float32x4x4_t load_quantized(const uint8_t *input1_ptr, const int32x4_t &offset, const float32x4_t &scale) { qasymm8x16_t x = vld1q_u8(input1_ptr); const float32x4x4_t out = { { vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(x))))), offset)), scale), vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(x))))), offset)), scale), vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(x))))), offset)), scale), vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(x))))), offset)), scale), } }; return out; } void store_quantized(uint8_t *output_ptr, const uint32x4x4_t &out) { const uint8x8_t pa = vqmovn_u16(vcombine_u16(vqmovn_u32(out.val[0]), vqmovn_u32(out.val[1]))); const uint8x8_t pb = vqmovn_u16(vcombine_u16(vqmovn_u32(out.val[2]), vqmovn_u32(out.val[3]))); vst1q_u8(output_ptr, vcombine_u8(pa, pb)); } void store_quantized(uint8_t *output_ptr, const int32x4x4_t &out) { const uint8x8_t pa = vqmovun_s16(vcombine_s16(vqmovn_s32(out.val[0]), vqmovn_s32(out.val[1]))); const uint8x8_t pb = vqmovun_s16(vcombine_s16(vqmovn_s32(out.val[2]), vqmovn_s32(out.val[3]))); vst1q_u8(output_ptr, vcombine_u8(pa, pb)); } void store_quantized(uint8_t *output_ptr, const float32x4x4_t &rf, const float32x4_t &offset, const float32x4_t &invscale) { int32x4x4_t out = { { vcvtq_s32_f32(vmlaq_f32(offset, rf.val[0], invscale)), vcvtq_s32_f32(vmlaq_f32(offset, rf.val[1], invscale)), vcvtq_s32_f32(vmlaq_f32(offset, rf.val[2], invscale)), vcvtq_s32_f32(vmlaq_f32(offset, rf.val[3], invscale)), } }; store_quantized(output_ptr, out); } float32x4x4_t dup_quantized(qasymm8_t broadcast_value, int offset, float scale) { const qasymm8x16_t broadcast_value_vec = vdupq_n_u8(broadcast_value); const int32x4_t voffset = vdupq_n_s32(offset); const float32x4_t vscale = vdupq_n_f32(scale); const float32x4x4_t broadcast_vector = { { vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(broadcast_value_vec))))), voffset)), vscale), vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(broadcast_value_vec))))), voffset)), vscale), vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(broadcast_value_vec))))), voffset)), vscale), vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(broadcast_value_vec))))), voffset)), vscale), } }; return broadcast_vector; } template inline ScalarType elementwise_arithm_op_scalar(const ScalarType &a, const ScalarType &b) { auto res = ScalarType(0); switch(op) { case ArithmeticOperation::MAX: res = std::max(a, b); break; case ArithmeticOperation::MIN: res = std::min(a, b); break; case ArithmeticOperation::SQUARED_DIFF: { res = (a - b) * (a - b); break; } case ArithmeticOperation::PRELU: { res = (a > 0 ? a : a * b); break; } case ArithmeticOperation::DIV: { res = a / b; break; } case ArithmeticOperation::POWER: { res = std::pow(a, b); break; } default: ARM_COMPUTE_ERROR("NOT_SUPPORTED!"); } return res; } template inline uint8_t elementwise_arithm_op_quantized_scalar(const float &a, const float &b, UniformQuantizationInfo qinfo) { return quantize_qasymm8(elementwise_arithm_op_scalar(a, b), qinfo); } template inline typename VectorType::type elementwise_arithm_op(const typename VectorType::type &a, const typename VectorType::type &b) { using vec_type = typename VectorType::type; using scalar_type = typename VectorType::scalar_type; using tag_type = typename VectorType::tag_type; vec_type res = wrapper::vdup_n(static_cast(0), tag_type{}); switch(op) { case ArithmeticOperation::MAX: res = wrapper::vmax(a, b); break; case ArithmeticOperation::MIN: res = wrapper::vmin(a, b); break; case ArithmeticOperation::SQUARED_DIFF: { const vec_type tmp = wrapper::vsub(a, b); res = wrapper::vmul(tmp, tmp); break; } case ArithmeticOperation::PRELU: { const vec_type zero = wrapper::vdup_n(static_cast(0), tag_type{}); const vec_type tmp = wrapper::vmul(a, b); const auto gt = wrapper::vcgt(a, zero); res = wrapper::vbsl(gt, a, tmp); break; } default: ARM_COMPUTE_ERROR("NOT_SUPPORTED!"); } return res; } template <> inline float32x4_t elementwise_arithm_op>(const float32x4_t &a, const float32x4_t &b) { return wrapper::vdiv(a, b); } template <> inline float32x4_t elementwise_arithm_op>(const float32x4_t &a, const float32x4_t &b) { return wrapper::vpow(a, b); } #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC template <> inline float16x8_t elementwise_arithm_op>(const float16x8_t &a, const float16x8_t &b) { return wrapper::vdiv(a, b); } template <> inline float16x8_t elementwise_arithm_op>(const float16x8_t &a, const float16x8_t &b) { return wrapper::vpow(a, b); } #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC template inline float32x4x4_t elementwise_arithm_op(const float32x4x4_t &a, const float32x4x4_t &b) { using neon_vector_float = wrapper::traits::neon_vector; float32x4x4_t out = { { elementwise_arithm_op(a.val[0], b.val[0]), elementwise_arithm_op(a.val[1], b.val[1]), elementwise_arithm_op(a.val[2], b.val[2]), elementwise_arithm_op(a.val[3], b.val[3]), } }; return out; } template inline typename VectorType::type elementwise_arithm_op_broadcast(const typename VectorType::type &a, const ScalarType &broadcast_value, const bool reorder) { using tag_type = typename VectorType::tag_type; using vec_type = typename VectorType::type; vec_type broadcast_vector = wrapper::vdup_n(broadcast_value, tag_type{}); return elementwise_arithm_op(reorder ? broadcast_vector : a, reorder ? a : broadcast_vector); } template inline uint8_t elementwise_comp_op_scalar(const InputScalarType &a, const InputScalarType &b) { bool res = false; switch(op) { case ComparisonOperation::Equal: res = (a == b); break; case ComparisonOperation::NotEqual: res = (a != b); break; case ComparisonOperation::Greater: res = (a > b); break; case ComparisonOperation::GreaterEqual: res = (a >= b); break; case ComparisonOperation::Less: res = (a < b); break; case ComparisonOperation::LessEqual: res = (a <= b); break; default: ARM_COMPUTE_ERROR("NOT_SUPPORTED!"); } return res ? ~static_cast(0) : static_cast(0); } template inline uint8_t elementwise_comp_op_quantized_scalar(const float &a, const float &b, UniformQuantizationInfo qinfo) { ARM_COMPUTE_UNUSED(qinfo); return elementwise_comp_op_scalar(a, b); } template inline OutputVectorType elementwise_comp_op(const InputVectorType &a, const InputVectorType &b) { OutputVectorType res = { 0, 0, 0, 0 }; switch(op) { case ComparisonOperation::Equal: res = wrapper::vceq(a, b); break; case ComparisonOperation::NotEqual: res = wrapper::vnot(wrapper::vceq(a, b)); break; case ComparisonOperation::Greater: res = wrapper::vcgt(a, b); break; case ComparisonOperation::GreaterEqual: res = wrapper::vcge(a, b); break; case ComparisonOperation::Less: res = wrapper::vcgt(b, a); break; case ComparisonOperation::LessEqual: res = wrapper::vcge(b, a); break; default: ARM_COMPUTE_ERROR("NOT_SUPPORTED!"); } return res; } template inline uint32x4x4_t elementwise_comp_op(const float32x4x4_t &a, const float32x4x4_t &b) { uint32x4x4_t out = { { elementwise_comp_op(a.val[0], b.val[0]), elementwise_comp_op(a.val[1], b.val[1]), elementwise_comp_op(a.val[2], b.val[2]), elementwise_comp_op(a.val[3], b.val[3]) } }; return out; } template inline OutputVectorType elementwise_comp_op_broadcast(const InputVectorType &a, const InputScalarType &broadcast_value, const bool reorder) { InputVectorType broadcast_vector = wrapper::vdup_n(broadcast_value, wrapper::traits::vector_128_tag()); return elementwise_comp_op(reorder ? broadcast_vector : a, reorder ? a : broadcast_vector); } template inline int elementwise_arithm_op_loop(int window_start_x, int window_end_x, int window_step_x, const ScalarType *input1_ptr, const ScalarType *input2_ptr, ScalarType *output_ptr) { int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const auto a = wrapper::vloadq(input1_ptr + x); const auto b = wrapper::vloadq(input2_ptr + x); wrapper::vstore(output_ptr + x, elementwise_arithm_op(a, b)); } return x; } template inline int elementwise_arithm_op_quantized_loop(int window_start_x, int window_end_x, int window_step_x, const uint8_t *input1_ptr, const uint8_t *input2_ptr, uint8_t *output_ptr, int32x4_t voffset1, int32x4_t voffset2, float32x4_t vscale1, float32x4_t vscale2, float32x4_t voffseto, float32x4_t invvscaleo) { int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { // Get inputs and compute output const float32x4x4_t af = load_quantized(input1_ptr + x, voffset1, vscale1); const float32x4x4_t bf = load_quantized(input2_ptr + x, voffset2, vscale2); const float32x4x4_t rf = elementwise_arithm_op(af, bf); store_quantized(output_ptr + x, rf, voffseto, invvscaleo); } return x; } template inline int elementwise_arithm_op_broadcast_loop(int window_start_x, int window_end_x, int window_step_x, const ScalarType *non_broadcast_input_ptr, const ScalarType &broadcast_value, ScalarType *output_ptr, const bool reorder) { int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const auto a = wrapper::vloadq((non_broadcast_input_ptr + x)); wrapper::vstore(output_ptr + x, elementwise_arithm_op_broadcast(a, broadcast_value, reorder)); } return x; } template inline int elementwise_arithm_op_quantized_broadcast_loop(int window_start_x, int window_end_x, int window_step_x, const uint8_t *non_broadcast_input_ptr, float32x4x4_t broadcast_vector, uint8_t *output_ptr, int32x4_t voffset_non_broadcast, float32x4_t vscale_non_broadcast, float32x4_t voffseto, float32x4_t invvscaleo, bool reorder) { int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const float32x4x4_t af = load_quantized(non_broadcast_input_ptr + x, voffset_non_broadcast, vscale_non_broadcast); const float32x4x4_t rf = elementwise_arithm_op(reorder ? broadcast_vector : af, reorder ? af : broadcast_vector); store_quantized(output_ptr + x, rf, voffseto, invvscaleo); } return x; } template inline int elementwise_comp_op_16_loop(int window_start_x, int window_end_x, int window_step_x, const InputScalarType *input1_ptr, const InputScalarType *input2_ptr, uint8_t *output_ptr) { int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const auto a = wrapper::vloadq(input1_ptr + x); const auto b = wrapper::vloadq(input2_ptr + x); const auto res = elementwise_comp_op(a, b); wrapper::vstore(output_ptr + x, wrapper::vmovn(res)); } return x; } template inline int elementwise_comp_op_32_loop(int window_start_x, int window_end_x, int window_step_x, const InputScalarType *input1_ptr, const InputScalarType *input2_ptr, uint8_t *output_ptr) { int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { auto a = wrapper::vloadq(input1_ptr + x); auto b = wrapper::vloadq(input2_ptr + x); const auto res = elementwise_comp_op(a, b); a = wrapper::vloadq(input1_ptr + x + 4); b = wrapper::vloadq(input2_ptr + x + 4); const auto res2 = elementwise_comp_op(a, b); wrapper::vstore(output_ptr + x, wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(res), wrapper::vmovn(res2)))); } if(x <= window_end_x - 4) { const auto a = wrapper::vloadq(input1_ptr + x); const auto b = wrapper::vloadq(input2_ptr + x); const auto res = elementwise_comp_op(a, b); for(int i = 0; i < 4; i++) { *(output_ptr + x + i) = wrapper::vgetlane(res, i); } x = +4; } return x; } template inline int elementwise_comp_op_quantized_loop(int window_start_x, int window_end_x, int window_step_x, const uint8_t *input1_ptr, const uint8_t *input2_ptr, uint8_t *output_ptr, int32x4_t voffset1, int32x4_t voffset2, float32x4_t vscale1, float32x4_t vscale2, float32x4_t voffseto, float32x4_t invvscaleo) { ARM_COMPUTE_UNUSED(voffseto, invvscaleo); int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const float32x4x4_t af = load_quantized(input1_ptr + x, voffset1, vscale1); const float32x4x4_t bf = load_quantized(input2_ptr + x, voffset2, vscale2); const uint32x4x4_t rf = elementwise_comp_op(af, bf); store_quantized(output_ptr + x, rf); } return x; } template inline int elementwise_comp_op_broadcast_16_loop(int window_start_x, int window_end_x, int window_step_x, const InputScalarType *non_broadcast_input_ptr, const InputScalarType &broadcast_value, uint8_t *output_ptr, const bool reorder) { int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const auto a = elementwise_comp_op_broadcast(wrapper::vloadq((non_broadcast_input_ptr + x)), broadcast_value, reorder); wrapper::vstore(output_ptr + x, wrapper::vmovn(a)); } return x; } template inline int elementwise_comp_op_broadcast_32_loop(int window_start_x, int window_end_x, int window_step_x, const InputScalarType *non_broadcast_input_ptr, const InputScalarType &broadcast_value, uint8_t *output_ptr, const bool reorder) { int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const auto a = elementwise_comp_op_broadcast(wrapper::vloadq(non_broadcast_input_ptr + x), broadcast_value, reorder); const auto b = elementwise_comp_op_broadcast(wrapper::vloadq(non_broadcast_input_ptr + x + 4), broadcast_value, reorder); wrapper::vstore(output_ptr + x, wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(a), wrapper::vmovn(b)))); } if(x <= window_end_x - 4) { const auto a = elementwise_comp_op_broadcast(wrapper::vloadq((non_broadcast_input_ptr + x)), broadcast_value, reorder); for(int i = 0; i < 4; i++) { *(output_ptr + x + i) = wrapper::vgetlane(a, i); } x = +4; } return x; } template inline int elementwise_comp_op_quantized_broadcast_loop(int window_start_x, int window_end_x, int window_step_x, const uint8_t *non_broadcast_input_ptr, float32x4x4_t broadcast_vector, uint8_t *output_ptr, int32x4_t voffset_non_broadcast, float32x4_t vscale_non_broadcast, float32x4_t voffseto, float32x4_t invvscaleo, bool reorder) { ARM_COMPUTE_UNUSED(voffseto, invvscaleo); int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const float32x4x4_t af = load_quantized(non_broadcast_input_ptr + x, voffset_non_broadcast, vscale_non_broadcast); const uint32x4x4_t rf = elementwise_comp_op(reorder ? broadcast_vector : af, reorder ? af : broadcast_vector); store_quantized(output_ptr + x, rf); } return x; } template void elementwise_op(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, OutputScalarType (*scalar_func)(const InputScalarType &, const InputScalarType &), int (*broadcast_func)(int, int, int, const InputScalarType *, const InputScalarType &, OutputScalarType *, const bool), int (*neon_func)(int, int, int, const InputScalarType *, const InputScalarType *, OutputScalarType *)) { // Create input windows Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); const int window_step_x = std::min(16 / static_cast(sizeof(OutputScalarType)), 8); const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0); if(is_broadcast_across_x) { const bool is_broadcast_input_2 = input2_win.x().step() == 0; Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win; Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win; const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1; const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1; // Clear X Dimension on execution window as we handle manually non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator broadcast_input(broadcast_tensor, broadcast_win); Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win); Iterator output(out, win); execute_window_loop(win, [&](const Coordinates &) { auto output_ptr = reinterpret_cast(output.ptr()); const auto non_broadcast_input_ptr = reinterpret_cast(non_broadcast_input.ptr()); const InputScalarType broadcast_value = *reinterpret_cast(broadcast_input.ptr()); int x = (*broadcast_func)(window_start_x, window_end_x, window_step_x, non_broadcast_input_ptr, broadcast_value, output_ptr, !is_broadcast_input_2); for(; x < window_end_x; ++x) { const auto a = *(non_broadcast_input_ptr + x); *(output_ptr + x) = (*scalar_func)(!is_broadcast_input_2 ? broadcast_value : a, !is_broadcast_input_2 ? a : broadcast_value); } }, broadcast_input, non_broadcast_input, output); } else { // Clear X Dimension on execution window as we handle manually input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input1(in1, input1_win); Iterator input2(in2, input2_win); Iterator output(out, win); execute_window_loop(win, [&](const Coordinates &) { auto output_ptr = reinterpret_cast(output.ptr()); const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); int x = (*neon_func)(window_start_x, window_end_x, window_step_x, input1_ptr, input2_ptr, output_ptr); for(; x < window_end_x; ++x) { const auto a = *(input1_ptr + x); const auto b = *(input2_ptr + x); *(output_ptr + x) = (*scalar_func)(a, b); } }, input1, input2, output); } } void elementwise_op_quantized(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, uint8_t (*scalar_func)(const float &, const float &, UniformQuantizationInfo), int (*broadcast_func)(int, int, int, const uint8_t *, float32x4x4_t, uint8_t *, int32x4_t, float32x4_t, float32x4_t, float32x4_t, const bool), int (*neon_func)(int, int, int, const uint8_t *, const uint8_t *, uint8_t *, int32x4_t, int32x4_t, float32x4_t, float32x4_t, float32x4_t, float32x4_t)) { // Create input windows Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); const int window_step_x = 16; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0); const UniformQuantizationInfo output_qinfo = out->info()->quantization_info().uniform(); // Output quantization info (add 0.5 to round toward the nearest integer - 0.5 rounds away from zero) const float32x4_t voffseto = vdupq_n_f32(output_qinfo.offset + 0.5f); const float32x4_t invvscaleo = vdupq_n_f32(1.f / output_qinfo.scale); if(is_broadcast_across_x) { // Select the broadcast input on the X axis const bool is_broadcast_input_2 = input2_win.x().step() == 0; Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win; Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win; const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1; const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1; const UniformQuantizationInfo broadcast_qinfo = broadcast_tensor->info()->quantization_info().uniform(); const UniformQuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info().uniform(); const int32x4_t voffset_non_broadcast = vdupq_n_s32(non_broadcast_qinfo.offset); const float32x4_t vscale_non_broadcast = vdupq_n_f32(non_broadcast_qinfo.scale); // Clear X Dimension on execution window as we handle manually non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator broadcast_input(broadcast_tensor, broadcast_win); Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win); Iterator output(out, win); execute_window_loop(win, [&](const Coordinates &) { const auto non_broadcast_input_ptr = reinterpret_cast(non_broadcast_input.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); const uint8_t broadcast_value = *reinterpret_cast(broadcast_input.ptr()); const float32x4x4_t broadcast_vector = dup_quantized(broadcast_value, broadcast_qinfo.offset, broadcast_qinfo.scale); int x = (*broadcast_func)(window_start_x, window_end_x, window_step_x, non_broadcast_input_ptr, broadcast_vector, output_ptr, voffset_non_broadcast, vscale_non_broadcast, voffseto, invvscaleo, !is_broadcast_input_2); for(; x < window_end_x; ++x) { const float afs = dequantize_qasymm8(*(non_broadcast_input_ptr + x), non_broadcast_qinfo); const float bfs = dequantize_qasymm8(broadcast_value, broadcast_qinfo); *(output_ptr + x) = (*scalar_func)(!is_broadcast_input_2 ? bfs : afs, !is_broadcast_input_2 ? afs : bfs, output_qinfo); } }, broadcast_input, non_broadcast_input, output); } else { const UniformQuantizationInfo input1_qinfo = in1->info()->quantization_info().uniform(); const UniformQuantizationInfo input2_qinfo = in2->info()->quantization_info().uniform(); // Input1 quantization info const int32x4_t voffset1 = vdupq_n_s32(input1_qinfo.offset); const float32x4_t vscale1 = vdupq_n_f32(input1_qinfo.scale); // Input2 quantization info const int32x4_t voffset2 = vdupq_n_s32(input2_qinfo.offset); const float32x4_t vscale2 = vdupq_n_f32(input2_qinfo.scale); // Clear X Dimension on execution window as we handle manually input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input1(in1, input1_win); Iterator input2(in2, input2_win); Iterator output(out, win); execute_window_loop(win, [&](const Coordinates &) { const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); int x = (*neon_func)(window_start_x, window_end_x, window_step_x, input1_ptr, input2_ptr, output_ptr, voffset1, voffset2, vscale1, vscale2, voffseto, invvscaleo); for(; x < window_end_x; ++x) { const float afs = dequantize_qasymm8(*(input1_ptr + x), input1_qinfo); const float bfs = dequantize_qasymm8(*(input2_ptr + x), input2_qinfo); *(output_ptr + x) = (*scalar_func)(afs, bfs, output_qinfo); } }, input1, input2, output); } } template void elementwise_comp_op_16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window) { elementwise_op(in1, in2, out, window, &elementwise_comp_op_scalar, &elementwise_comp_op_broadcast_16_loop, &elementwise_comp_op_16_loop); } template void elementwise_comp_op_32(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window) { elementwise_op(in1, in2, out, window, &elementwise_comp_op_scalar, &elementwise_comp_op_broadcast_32_loop, &elementwise_comp_op_32_loop); } template void elementwise_arithm_op(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window) { using scalar_type = typename VectorType::scalar_type; elementwise_op(in1, in2, out, window, &elementwise_arithm_op_scalar, &elementwise_arithm_op_broadcast_loop, &elementwise_arithm_op_loop); } template void elementwise_arithm_op_quantized(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window) { elementwise_op_quantized(in1, in2, out, window, &elementwise_arithm_op_quantized_scalar, &elementwise_arithm_op_quantized_broadcast_loop, &elementwise_arithm_op_quantized_loop); } template void elementwise_comp_op_quantized(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window) { elementwise_op_quantized(in1, in2, out, window, &elementwise_comp_op_quantized_scalar, &elementwise_comp_op_quantized_broadcast_loop, &elementwise_comp_op_quantized_loop); } std::function configure_func(const ITensor *input1, const ITensor *input2, ITensor *output, std::map map_function) { std::string function_to_call("op_"); function_to_call += string_from_data_type(input1->info()->data_type()) + "_"; function_to_call += string_from_data_type(input2->info()->data_type()) + "_"; function_to_call += string_from_data_type(output->info()->data_type()); auto it = map_function.find(function_to_call); if(it != map_function.end()) { auto func = it->second; return [func](const ITensor * input1, const ITensor * input2, ITensor * output, const Window & window) { func(input1, input2, output, window); }; } return nullptr; } template std::function configure_arithm_func(const ITensor *input1, const ITensor *input2, ITensor *output) { static std::map map_function = { { "op_F32_F32_F32", &elementwise_arithm_op> }, { "op_S16_S16_S16", &elementwise_arithm_op> }, { "op_S32_S32_S32", &elementwise_arithm_op> }, { "op_QASYMM8_QASYMM8_QASYMM8", &elementwise_arithm_op_quantized } }; #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC map_function["op_F16_F16_F16"] = &elementwise_arithm_op>; #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ return configure_func(input1, input2, output, map_function); } template std::function configure_comp_func(const ITensor *input1, const ITensor *input2, ITensor *output) { static std::map map_function = { { "op_F32_F32_U8", &elementwise_comp_op_32 }, { "op_S16_S16_U8", &elementwise_comp_op_16 }, { "op_S32_S32_U8", &elementwise_comp_op_32 }, { "op_QASYMM8_QASYMM8_U8", &elementwise_comp_op_quantized } }; #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC map_function["op_F16_F16_U8"] = &elementwise_comp_op_16; #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ return configure_func(input1, input2, output, map_function); } } // namespace NEElementwiseOperationKernel::NEElementwiseOperationKernel() : _function(nullptr), _input1(nullptr), _input2(nullptr), _output(nullptr) { } Status NEElementwiseOperationKernel::validate_arguments_common(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input1, 1, DataType::QASYMM8, DataType::S16, DataType::F16, DataType::S32, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input2, 1, DataType::QASYMM8, DataType::S16, DataType::F16, DataType::S32, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&input1); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input1, &input2); const TensorShape out_shape = TensorShape::broadcast_shape(input1.tensor_shape(), input2.tensor_shape()); ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible"); // Validate in case of configured output if(output.total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output.tensor_shape(), 0), "Wrong shape for output"); } return Status{}; } void NEElementwiseOperationKernel::configure_common(const ITensor *input1, const ITensor *input2, ITensor *output) { ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output); // Configure kernel window const std::pair broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(*input1->info(), *input2->info()); const TensorShape &out_shape = broadcast_pair.first; const ValidRegion &valid_region = broadcast_pair.second; // Auto initialize output if not initialized auto_init_if_empty(*output->info(), out_shape, 1, input1->info()->data_type()); Window win = calculate_max_window(valid_region); _input1 = input1; _input2 = input2; _output = output; INEKernel::configure(win); } void NEElementwiseOperationKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info, window); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); ARM_COMPUTE_ERROR_ON(_function == nullptr); _function(_input1, _input2, _output, window); } /** Arithmetic operators (min, max, squared_diff) */ void NEArithmeticOperationKernel::configure(ArithmeticOperation op, const ITensor *input1, const ITensor *input2, ITensor *output) { ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*input1->info(), *input2->info(), *output->info())); configure_common(input1, input2, output); switch(op) { case ArithmeticOperation::MAX: _function = configure_arithm_func(input1, input2, output); break; case ArithmeticOperation::MIN: _function = configure_arithm_func(input1, input2, output); break; case ArithmeticOperation::SQUARED_DIFF: _function = configure_arithm_func(input1, input2, output); break; case ArithmeticOperation::PRELU: _function = configure_arithm_func(input1, input2, output); break; default: ARM_COMPUTE_ERROR("NOT_SUPPORTED!"); } } Status NEArithmeticOperationKernel::validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output) { // Validate in case of configured output if(output.total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input1, &output); } return validate_arguments_common(input1, input2, output); } Status NEArithmeticOperationKernel::validate(ArithmeticOperation op, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output) { ARM_COMPUTE_UNUSED(op); ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*input1, *input2, *output)); return Status{}; } /** The division operator */ void NEDivisionOperationKernel::configure(const ITensor *input1, const ITensor *input2, ITensor *output) { ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*input1->info(), *input2->info(), *output->info())); configure_common(input1, input2, output); _function = configure_arithm_func(input1, input2, output); } Status NEDivisionOperationKernel::validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input1, 1, DataType::F16, DataType::F32); return NEArithmeticOperationKernel::validate_arguments(input1, input2, output); } Status NEDivisionOperationKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*input1, *input2, *output)); return Status{}; } /** The power operator */ void NEPowerOperationKernel::configure(const ITensor *input1, const ITensor *input2, ITensor *output) { ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*input1->info(), *input2->info(), *output->info())); configure_common(input1, input2, output); _function = configure_arithm_func(input1, input2, output); } Status NEPowerOperationKernel::validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input1, 1, DataType::F16, DataType::F32); return NEArithmeticOperationKernel::validate_arguments(input1, input2, output); } Status NEPowerOperationKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*input1, *input2, *output)); return Status{}; } /** Comparison operators (equal, not equal, less than, greater than, less than or equal, greater than or equal) */ void NEComparisonOperationKernel::configure(ComparisonOperation op, const ITensor *input1, const ITensor *input2, ITensor *output) { ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*input1->info(), *input2->info(), *output->info())); configure_common(input1, input2, output); switch(op) { case ComparisonOperation::Equal: _function = configure_comp_func(input1, input2, output); break; case ComparisonOperation::NotEqual: _function = configure_comp_func(input1, input2, output); break; case ComparisonOperation::Greater: _function = configure_comp_func(input1, input2, output); break; case ComparisonOperation::GreaterEqual: _function = configure_comp_func(input1, input2, output); break; case ComparisonOperation::Less: _function = configure_comp_func(input1, input2, output); break; case ComparisonOperation::LessEqual: _function = configure_comp_func(input1, input2, output); break; default: ARM_COMPUTE_ERROR("NOT_SUPPORTED!"); } } Status NEComparisonOperationKernel::validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output) { // Validate in case of configured output if(output.total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&output, 1, DataType::U8); } return validate_arguments_common(input1, input2, output); } Status NEComparisonOperationKernel::validate(ComparisonOperation op, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output) { ARM_COMPUTE_UNUSED(op); ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*input1, *input2, *output)); return Status{}; } } // namespace arm_compute