/* * Copyright (c) 2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEElementwiseOperationKernel.h" #include "arm_compute/core/CPP/Validate.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/IAccessWindow.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/NEON/NEAsymm.h" #include "arm_compute/core/NEON/NEFixedPoint.h" #include "arm_compute/core/NEON/wrapper/wrapper.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Validate.h" #include #include #include #include #include namespace arm_compute { class Coordinates; namespace { float32x4x4_t load_quantized(const uint8_t *input1_ptr, const int32x4_t &offset, const float32x4_t &scale) { qasymm8x16_t x = vld1q_u8(input1_ptr); const float32x4x4_t out = { { vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(x))))), offset)), scale), vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(x))))), offset)), scale), vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(x))))), offset)), scale), vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(x))))), offset)), scale), } }; return out; } void store_quantized(uint8_t *output_ptr, const float32x4x4_t &rf, const float32x4_t &offset, const float32x4_t &invscale) { int32x4x4_t out = { vcvtq_s32_f32(vmlaq_f32(offset, rf.val[0], invscale)), vcvtq_s32_f32(vmlaq_f32(offset, rf.val[1], invscale)), vcvtq_s32_f32(vmlaq_f32(offset, rf.val[2], invscale)), vcvtq_s32_f32(vmlaq_f32(offset, rf.val[3], invscale)), }; const uint8x8_t pa = vqmovun_s16(vcombine_s16(vqmovn_s32(out.val[0]), vqmovn_s32(out.val[1]))); const uint8x8_t pb = vqmovun_s16(vcombine_s16(vqmovn_s32(out.val[2]), vqmovn_s32(out.val[3]))); vst1q_u8(output_ptr, vcombine_u8(pa, pb)); } float32x4x4_t dup_quantized(qasymm8_t broadcast_value, int offset, float scale) { const qasymm8x16_t broadcast_value_vec = vdupq_n_u8(broadcast_value); const int32x4_t voffset = vdupq_n_s32(offset); const float32x4_t vscale = vdupq_n_f32(scale); const float32x4x4_t broadcast_vector = { { vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(broadcast_value_vec))))), voffset)), vscale), vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(broadcast_value_vec))))), voffset)), vscale), vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(broadcast_value_vec))))), voffset)), vscale), vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(broadcast_value_vec))))), voffset)), vscale), } }; return broadcast_vector; } template inline ScalarType elementwise_op_scalar(const ScalarType &a, const ScalarType &b) { auto res = ScalarType(0); switch(op) { case ArithmeticOperation::MAX: res = std::max(a, b); break; case ArithmeticOperation::MIN: res = std::min(a, b); break; case ArithmeticOperation::SQUARED_DIFF: { res = (a - b) * (a - b); break; } default: ARM_COMPUTE_ERROR("NOT_SUPPORTED!"); } return res; } template inline VectorType elementwise_op(const VectorType &a, const VectorType &b) { VectorType res = { 0, 0, 0, 0 }; switch(op) { case ArithmeticOperation::MAX: res = wrapper::vmax(a, b); break; case ArithmeticOperation::MIN: res = wrapper::vmin(a, b); break; case ArithmeticOperation::SQUARED_DIFF: { const VectorType tmp = wrapper::vsub(a, b); res = wrapper::vmul(tmp, tmp); break; } default: ARM_COMPUTE_ERROR("NOT_SUPPORTED!"); } return res; } template inline VectorType elementwise_op_broadcast(const VectorType &a, const ScalarType &broadcast_value) { VectorType broadcast_vector = wrapper::vdup_n(broadcast_value, wrapper::traits::vector_128_tag()); return elementwise_op(a, broadcast_vector); } template float32x4x4_t elementwise_op(const float32x4x4_t &a, const float32x4x4_t &b) { float32x4x4_t out = { elementwise_op(a.val[0], b.val[0]), elementwise_op(a.val[1], b.val[1]), elementwise_op(a.val[2], b.val[2]), elementwise_op(a.val[3], b.val[3]), }; return out; } template void elementwise_op(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window) { // Create input windows Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); const int window_step_x = 16 / in1->info()->element_size(); const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0); if(is_broadcast_across_x) { // Select the broadcast input on the X axis const bool is_broadcast_input_2 = input2_win.x().step() == 0; Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win; Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win; const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1; const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1; // Clear X Dimension on execution window as we handle manually non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator broadcast_input(broadcast_tensor, broadcast_win); Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win); Iterator output(out, win); execute_window_loop(win, [&](const Coordinates & id) { auto output_ptr = reinterpret_cast(output.ptr()); const auto non_broadcast_input_ptr = reinterpret_cast(non_broadcast_input.ptr()); const ScalarType broadcast_value = *reinterpret_cast(broadcast_input.ptr()); int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const auto a = wrapper::vloadq((non_broadcast_input_ptr + x)); wrapper::vstore(output_ptr + x, elementwise_op_broadcast(a, broadcast_value)); } for(; x < window_end_x; ++x) { const auto a = *(non_broadcast_input_ptr + x); *(output_ptr + x) = elementwise_op_scalar(a, broadcast_value); } }, broadcast_input, non_broadcast_input, output); } else { // Clear X Dimension on execution window as we handle manually input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input1(in1, input1_win); Iterator input2(in2, input2_win); Iterator output(out, win); execute_window_loop(win, [&](const Coordinates & id) { auto output_ptr = reinterpret_cast(output.ptr()); const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const auto a = wrapper::vloadq(input1_ptr + x); const auto b = wrapper::vloadq(input2_ptr + x); wrapper::vstore(output_ptr + x, elementwise_op(a, b)); } for(; x < window_end_x; ++x) { const auto a = *(input1_ptr + x); const auto b = *(input2_ptr + x); *(output_ptr + x) = elementwise_op_scalar(a, b); } }, input1, input2, output); } } template void elementwise_op_quantized(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window) { // Create input windows Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); const int window_step_x = 16; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0); const float output_scale = out->info()->quantization_info().scale; const int output_offset = out->info()->quantization_info().offset; // Output quantization info (add 0.5 to round toward the nearest integer - 0.5 rounds away from zero) const float32x4_t voffseto = vdupq_n_f32(output_offset + 0.5f); const float32x4_t invvscaleo = vdupq_n_f32(1.f / output_scale); if(is_broadcast_across_x) { // Select the broadcast input on the X axis const bool is_broadcast_input_2 = input2_win.x().step() == 0; Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win; Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win; const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1; const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1; const QuantizationInfo broadcast_qinfo = broadcast_tensor->info()->quantization_info(); const QuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info(); const int32x4_t voffset_non_broadcast = vdupq_n_s32(non_broadcast_qinfo.offset); const float32x4_t vscale_non_broadcast = vdupq_n_f32(non_broadcast_qinfo.scale); // Clear X Dimension on execution window as we handle manually non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator broadcast_input(broadcast_tensor, broadcast_win); Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win); Iterator output(out, win); execute_window_loop(win, [&](const Coordinates & id) { const auto non_broadcast_input_ptr = reinterpret_cast(non_broadcast_input.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); const uint8_t broadcast_value = *reinterpret_cast(broadcast_input.ptr()); const float32x4x4_t broadcast_vector = dup_quantized(broadcast_value, broadcast_qinfo.offset, broadcast_qinfo.scale); int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const float32x4x4_t af = load_quantized(non_broadcast_input_ptr + x, voffset_non_broadcast, vscale_non_broadcast); const float32x4x4_t rf = elementwise_op(af, broadcast_vector); store_quantized(output_ptr + x, rf, voffseto, invvscaleo); } for(; x < window_end_x; ++x) { const float afs = static_cast(*(non_broadcast_input_ptr + x) - non_broadcast_qinfo.offset) * non_broadcast_qinfo.scale; const float bfs = static_cast(broadcast_value - broadcast_qinfo.offset) * broadcast_qinfo.scale; *(output_ptr + x) = out->info()->quantization_info().quantize(elementwise_op_scalar(afs, bfs), RoundingPolicy::TO_NEAREST_UP); } }, broadcast_input, non_broadcast_input, output); } else { // Input1 quantization info const int32x4_t voffset1 = vdupq_n_s32(in1->info()->quantization_info().offset); const float32x4_t vscale1 = vdupq_n_f32(in1->info()->quantization_info().scale); // Input2 quantization info const int32x4_t voffset2 = vdupq_n_s32(in2->info()->quantization_info().offset); const float32x4_t vscale2 = vdupq_n_f32(in2->info()->quantization_info().scale); // Clear X Dimension on execution window as we handle manually input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); const QuantizationInfo input1_qinfo = in1->info()->quantization_info(); const QuantizationInfo input2_qinfo = in2->info()->quantization_info(); Iterator input1(in1, input1_win); Iterator input2(in2, input2_win); Iterator output(out, win); execute_window_loop(win, [&](const Coordinates & id) { const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { // Get inputs and compute output const float32x4x4_t af = load_quantized(input1_ptr + x, voffset1, vscale1); const float32x4x4_t bf = load_quantized(input2_ptr + x, voffset2, vscale2); const float32x4x4_t rf = elementwise_op(af, bf); store_quantized(output_ptr + x, rf, voffseto, invvscaleo); } for(; x < window_end_x; ++x) { const float afs = static_cast((*(input1_ptr + x)) - input1_qinfo.offset) * input1_qinfo.scale; const float bfs = static_cast((*(input2_ptr + x)) - input2_qinfo.offset) * input2_qinfo.scale; *(output_ptr + x) = out->info()->quantization_info().quantize(elementwise_op_scalar(afs, bfs), RoundingPolicy::TO_NEAREST_UP); } }, input1, input2, output); } } Status validate_arguments_arithmetic(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output) { ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&input1); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input1, 1, DataType::QASYMM8, DataType::S16, DataType::F16, DataType::S32, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input2, 1, DataType::QASYMM8, DataType::S16, DataType::F16, DataType::S32, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input1, &input2); const TensorShape out_shape = TensorShape::broadcast_shape(input1.tensor_shape(), input2.tensor_shape()); ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible"); // Validate in case of configured output if(output.total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input1, &output); ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output.tensor_shape(), 0), "Wrong shape for output"); } return Status{}; } } // namespace NEElementwiseOperationKernel::NEElementwiseOperationKernel() : _op(), _func(nullptr), _input1(nullptr), _input2(nullptr), _output(nullptr) { } template void NEElementwiseOperationKernel::configure_common(const ITensor *input1, const ITensor *input2, ITensor *output) { ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*input1->info(), *input2->info(), *output->info())); // Configure kernel window const std::pair broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(*input1->info(), *input2->info()); const TensorShape &out_shape = broadcast_pair.first; const ValidRegion &valid_region = broadcast_pair.second; // Auto initialize output if not initialized auto_init_if_empty(*output->info(), out_shape, 1, input1->info()->data_type()); Window win = calculate_max_window(valid_region); static std::map map_function = { { "op_F32_F32_F32", &elementwise_op }, { "op_S16_S16_S16", &elementwise_op }, { "op_S32_S32_S32", &elementwise_op }, { "op_QASYMM8_QASYMM8_QASYMM8", &elementwise_op_quantized } }; #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC map_function["op_F16_F16_F16"] = &elementwise_op; #endif /* ARM_COMPUTE_AARCH64_V8_2 */ _input1 = input1; _input2 = input2; _output = output; std::string function_to_call("op_"); function_to_call += string_from_data_type(input1->info()->data_type()) + "_"; function_to_call += string_from_data_type(input2->info()->data_type()) + "_"; function_to_call += string_from_data_type(output->info()->data_type()); auto it = map_function.find(function_to_call); if(it != map_function.end()) { _func = it->second; } INEKernel::configure(win); } void NEElementwiseOperationKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); ARM_COMPUTE_ERROR_ON(_func == nullptr); (*_func)(_input1, _input2, _output, window); } /** Arithmetic operators (min, max, squared_diff) */ void NEArithmeticOperationKernel::configure(ArithmeticOperation op, const ITensor *input1, const ITensor *input2, ITensor *output) { _op = op; switch(op) { case ArithmeticOperation::MAX: configure_common(input1, input2, output); break; case ArithmeticOperation::MIN: configure_common(input1, input2, output); break; case ArithmeticOperation::SQUARED_DIFF: configure_common(input1, input2, output); break; default: ARM_COMPUTE_ERROR("NOT_SUPPORTED!"); } } Status NEArithmeticOperationKernel::validate(ArithmeticOperation op, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output) { ARM_COMPUTE_UNUSED(op); ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_arithmetic(*input1, *input2, *output)); return Status{}; } Status NEArithmeticOperationKernel::validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output) { return validate_arguments_arithmetic(input1, input2, output); } } // namespace arm_compute