/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEDirectConvolutionLayerOutputStageKernel.h" #include "arm_compute/core/AccessWindowStatic.h" #include "arm_compute/core/CPP/Validate.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/NEON/NEAsymm.h" #include "arm_compute/core/NEON/NEFixedPoint.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include #include #include using namespace arm_compute; namespace { Status validate_arguments(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift) { ARM_COMPUTE_UNUSED(result_fixedpoint_multiplier); ARM_COMPUTE_UNUSED(result_offset_after_shift); ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input); ARM_COMPUTE_RETURN_ERROR_ON(input->data_layout() == DataLayout::UNKNOWN); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::S32, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MSG(result_shift < 0, "Result shift must be a non negative integer"); if(bias != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bias, 1, DataType::F16, DataType::S32, DataType::F32); if(is_data_type_quantized_asymmetric(input->data_type())) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bias, 1, DataType::S32); } else { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias); } ARM_COMPUTE_RETURN_ERROR_ON(bias->dimension(0) != input->dimension(get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL))); ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1); } else { ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_data_type_float(input->data_type()), "Calling output stage kernel with floating point arguments"); } // Checks performed when output is configured if((output != nullptr) && (output->total_size() != 0)) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QASYMM8, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output); if(is_data_type_quantized_asymmetric(output->data_type())) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->data_type() == DataType::S32 && output->data_type() != DataType::QASYMM8, "Wrong data type for bias"); } else { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); } } return Status{}; } std::pair validate_and_configure_window(ITensorInfo *input, ITensorInfo *bias, ITensorInfo *output) { ARM_COMPUTE_ERROR_ON(input->data_layout() == DataLayout::UNKNOWN); bool window_changed = false; unsigned int num_elems_processed_per_iteration = 16 / element_size_from_data_type(input->data_type()); // Update processed elements when input is S32 (comes from quantization input) if(input->data_type() == DataType::S32) { num_elems_processed_per_iteration = 16; } // Configure kernel window Window win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration)); AccessWindowHorizontal input_access(input, 0, num_elems_processed_per_iteration); if(output != nullptr && (output->total_size() != 0)) { AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration); if(bias == nullptr) { window_changed = update_window_and_padding(win, input_access, output_access); } else { AccessWindowStatic bias_access(bias, 0, 0, bias->dimension(0), bias->dimension(1)); window_changed = update_window_and_padding(win, input_access, output_access, bias_access); } output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape())); } else { if(bias == nullptr) { window_changed = update_window_and_padding(win, input_access); } else { if(input->data_layout() == DataLayout::NCHW) { AccessWindowStatic bias_access(bias, 0, 0, bias->dimension(0), bias->dimension(1)); window_changed = update_window_and_padding(win, input_access, bias_access); } else { AccessWindowHorizontal bias_access(bias, 0, num_elems_processed_per_iteration); window_changed = update_window_and_padding(win, input_access, bias_access); } } input_access.set_valid_region(win, ValidRegion(Coordinates(), input->tensor_shape())); } Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, win); } // Internal load inline float32x4_t internal_vld1q(const float *in) { return vld1q_f32(in); } // Internal store inline void internal_vst1q(float *p, const float32x4_t &v) { vst1q_f32(p, v); } // Internal vdup inline float32x4_t internal_vdupq_n(float v) { return vdupq_n_f32(v); } // Internal vadd inline float32x4_t internal_vqaddq(const float32x4_t &x, const float32x4_t &y) { return vaddq_f32(x, y); } #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC inline float16x8_t internal_vld1q(const float16_t *in) { return vld1q_f16(in); } inline void internal_vst1q(float16_t *p, const float16x8_t &v) { vst1q_f16(p, v); } inline float16x8_t internal_vdupq_n(float16_t v) { return vdupq_n_f16(v); } inline float16x8_t internal_vqaddq(const float16x8_t &x, const float16x8_t &y) { return vaddq_f16(x, y); } #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ template void output_stage_nchw(ITensor *input, const ITensor *bias, const Window &window, ITensor *output, int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift) { ARM_COMPUTE_ERROR_ON(input->info()->data_layout() == DataLayout::UNKNOWN); ARM_COMPUTE_UNUSED(result_fixedpoint_multiplier); ARM_COMPUTE_UNUSED(result_shift); ARM_COMPUTE_UNUSED(result_offset_after_shift); Iterator in(input, window); if(in_place) // In place accumulate { execute_window_loop(window, [&](const Coordinates & id) { // Get bias and pointer to input const auto in_ptr = reinterpret_cast(in.ptr()); // Accumulate bias if(has_bias) { const auto vb = internal_vdupq_n(static_cast(*reinterpret_cast(bias->ptr_to_element(Coordinates(id.z()))))); internal_vst1q(in_ptr, internal_vqaddq(internal_vld1q(in_ptr), vb)); } else { internal_vst1q(in_ptr, internal_vld1q(in_ptr)); } }, in); } else // Out of place accumulate { Iterator out(output, window); execute_window_loop(window, [&](const Coordinates & id) { // Get bias and pointer to input const auto in_ptr = reinterpret_cast(in.ptr()); const auto out_ptr = reinterpret_cast(out.ptr()); // Accumulate bias if(has_bias) { const auto vb = internal_vdupq_n(static_cast(*reinterpret_cast(bias->ptr_to_element(Coordinates(id.z()))))); internal_vst1q(out_ptr, internal_vqaddq(internal_vld1q(in_ptr), vb)); } else { internal_vst1q(out_ptr, internal_vld1q(in_ptr)); } }, in, out); } } template void output_stage_nhwc(ITensor *input, const ITensor *bias, const Window &window, ITensor *output, int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift) { ARM_COMPUTE_UNUSED(result_fixedpoint_multiplier); ARM_COMPUTE_UNUSED(result_shift); ARM_COMPUTE_UNUSED(result_offset_after_shift); Window window_bias = window; window_bias.set(Window::DimY, Window::Dimension(0, 0, 0)); window_bias.set(Window::DimZ, Window::Dimension(0, 0, 0)); window_bias.set(3, Window::Dimension(0, 0, 0)); Iterator in(input, window); Iterator bi(bias, window_bias); if(in_place) // In place accumulate { execute_window_loop(window, [&](const Coordinates &) { // Get bias and pointer to input const auto in_ptr = reinterpret_cast(in.ptr()); const auto bias_ptr = reinterpret_cast(bi.ptr()); // Accumulate bias if(has_bias) { internal_vst1q(in_ptr, internal_vqaddq(internal_vld1q(in_ptr), internal_vld1q(bias_ptr))); } else { internal_vst1q(in_ptr, internal_vld1q(in_ptr)); } }, in, bi); } else // Out of place accumulate { Iterator out(output, window); execute_window_loop(window, [&](const Coordinates &) { // Get bias and pointer to input const auto in_ptr = reinterpret_cast(in.ptr()); const auto out_ptr = reinterpret_cast(out.ptr()); const auto bias_ptr = reinterpret_cast(bi.ptr()); // Accumulate bias if(has_bias) { internal_vst1q(out_ptr, internal_vqaddq(internal_vld1q(in_ptr), internal_vld1q(bias_ptr))); } else { internal_vst1q(out_ptr, internal_vld1q(in_ptr)); } }, in, bi, out); } } // QASYMM8 specializations template <> void output_stage_nchw(ITensor *input, const ITensor *bias, const Window &window, ITensor *output, int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift) { const int32x4_t result_offset_after_shift_s32 = vdupq_n_s32(result_offset_after_shift); uint8x16_t min = vdupq_n_u8(0); uint8x16_t max = vdupq_n_u8(255); Iterator in(input, window); Iterator out(output, window); execute_window_loop(window, [&](const Coordinates & id) { // Get bias and pointer to input const auto in_ptr = reinterpret_cast(in.ptr()); int32x4x4_t v_in = { { vld1q_s32(in_ptr), vld1q_s32(in_ptr + 4), vld1q_s32(in_ptr + 8), vld1q_s32(in_ptr + 12) } }; // Accumulate bias const auto vb = vdupq_n_s32(*reinterpret_cast(bias->ptr_to_element(Coordinates(id.z())))); v_in = { { vaddq_s32(v_in.val[0], vb), vaddq_s32(v_in.val[1], vb), vaddq_s32(v_in.val[2], vb), vaddq_s32(v_in.val[3], vb) } }; const auto out_ptr = reinterpret_cast(out.ptr()); vst1q_u8(out_ptr, finalize_quantization(v_in, result_fixedpoint_multiplier, result_shift, result_offset_after_shift_s32, min, max)); }, in, out); } template <> void output_stage_nchw(ITensor *input, const ITensor *bias, const Window &window, ITensor *output, int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift) { ARM_COMPUTE_UNUSED(bias); const int32x4_t result_offset_after_shift_s32 = vdupq_n_s32(result_offset_after_shift); uint8x16_t min = vdupq_n_u8(0); uint8x16_t max = vdupq_n_u8(255); Iterator in(input, window); Iterator out(output, window); execute_window_loop(window, [&](const Coordinates &) { // Get bias and pointer to input const auto in_ptr = reinterpret_cast(in.ptr()); int32x4x4_t v_in = { { vld1q_s32(in_ptr), vld1q_s32(in_ptr + 4), vld1q_s32(in_ptr + 8), vld1q_s32(in_ptr + 12) } }; const auto out_ptr = reinterpret_cast(out.ptr()); vst1q_u8(out_ptr, finalize_quantization(v_in, result_fixedpoint_multiplier, result_shift, result_offset_after_shift_s32, min, max)); }, in, out); } template <> void output_stage_nhwc(ITensor *input, const ITensor *bias, const Window &window, ITensor *output, int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift) { const int32x4_t result_offset_after_shift_s32 = vdupq_n_s32(result_offset_after_shift); uint8x16_t min = vdupq_n_u8(0); uint8x16_t max = vdupq_n_u8(255); Window window_bias = window; window_bias.set(Window::DimY, Window::Dimension(0, 0, 0)); window_bias.set(Window::DimZ, Window::Dimension(0, 0, 0)); window_bias.set(3, Window::Dimension(0, 0, 0)); Iterator in(input, window); Iterator bi(bias, window_bias); Iterator out(output, window); execute_window_loop(window, [&](const Coordinates &) { // Get bias and pointer to input const auto in_ptr = reinterpret_cast(in.ptr()); const auto bias_ptr = reinterpret_cast(bi.ptr()); // Accumulate bias int32x4x4_t v_in = { { vaddq_s32(vld1q_s32(in_ptr), vld1q_s32(bias_ptr)), vaddq_s32(vld1q_s32(in_ptr + 4), vld1q_s32(bias_ptr + 4)), vaddq_s32(vld1q_s32(in_ptr + 8), vld1q_s32(bias_ptr + 8)), vaddq_s32(vld1q_s32(in_ptr + 12), vld1q_s32(bias_ptr + 12)) } }; const auto out_ptr = out.ptr(); vst1q_u8(out_ptr, finalize_quantization(v_in, result_fixedpoint_multiplier, result_shift, result_offset_after_shift_s32, min, max)); }, in, bi, out); } template <> void output_stage_nhwc(ITensor *input, const ITensor *bias, const Window &window, ITensor *output, int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift) { ARM_COMPUTE_UNUSED(bias); const int32x4_t result_offset_after_shift_s32 = vdupq_n_s32(result_offset_after_shift); uint8x16_t min = vdupq_n_u8(0); uint8x16_t max = vdupq_n_u8(255); Iterator in(input, window); Iterator out(output, window); execute_window_loop(window, [&](const Coordinates &) { // Get pointer to input const auto in_ptr = reinterpret_cast(in.ptr()); int32x4x4_t v_in = { { vld1q_s32(in_ptr), vld1q_s32(in_ptr + 4), vld1q_s32(in_ptr + 8), vld1q_s32(in_ptr + 12) } }; const auto out_ptr = out.ptr(); vst1q_u8(out_ptr, finalize_quantization(v_in, result_fixedpoint_multiplier, result_shift, result_offset_after_shift_s32, min, max)); }, in, out); } } // namespace NEDirectConvolutionLayerOutputStageKernel::NEDirectConvolutionLayerOutputStageKernel() : _func(nullptr), _input(nullptr), _bias(nullptr), _output(nullptr), _result_fixedpoint_multiplier(0), _result_shift(0), _result_offset_after_shift(0) { } void NEDirectConvolutionLayerOutputStageKernel::configure(ITensor *input, const ITensor *bias, ITensor *output, int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift) { ARM_COMPUTE_ERROR_ON_NULLPTR(input); // Auto-initialize output output if required if(output != nullptr) { // Work out expected output data type const DataType output_dt = (input->info()->data_type() == DataType::S32) ? DataType::QASYMM8 : input->info()->data_type(); // Output tensor auto initialization if not yet initialized auto_init_if_empty(*output->info(), input->info()->clone()->set_data_type(output_dt)); } // Perform validation step ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), (bias == nullptr) ? nullptr : bias->info(), (output == nullptr) ? nullptr : output->info(), result_fixedpoint_multiplier, result_shift, result_offset_after_shift)); _func = nullptr; _bias = bias; _input = input; _output = output; _result_fixedpoint_multiplier = result_fixedpoint_multiplier; _result_shift = result_shift; _result_offset_after_shift = result_offset_after_shift; // Configure kernel window auto win_config = validate_and_configure_window(input->info(), (bias == nullptr) ? nullptr : bias->info(), (output == nullptr) ? nullptr : output->info()); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); INEKernel::configure(win_config.second); const bool has_bias = bias != nullptr; // Set appropriate function if(input->info()->data_layout() == DataLayout::NCHW) { switch(input->info()->data_type()) { case DataType::S32: { _func = (bias == nullptr) ? &output_stage_nchw : &output_stage_nchw; break; } #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F16: { if(has_bias) { _func = (output == nullptr) ? &output_stage_nchw : &output_stage_nchw; } else { _func = (output == nullptr) ? &output_stage_nchw : &output_stage_nchw; } break; } #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ case DataType::F32: { if(has_bias) { _func = (output == nullptr) ? &output_stage_nchw : &output_stage_nchw; } else { _func = (output == nullptr) ? &output_stage_nchw : &output_stage_nchw; } break; } default: { ARM_COMPUTE_ERROR("Unsupported combination of types among the inputs."); } } } else { switch(input->info()->data_type()) { case DataType::S32: { _func = (bias == nullptr) ? &output_stage_nhwc : &output_stage_nhwc; break; } #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F16: { if(has_bias) { _func = (output == nullptr) ? &output_stage_nhwc : &output_stage_nhwc; } else { _func = (output == nullptr) ? &output_stage_nhwc : &output_stage_nhwc; } break; } #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ case DataType::F32: { if(has_bias) { _func = (output == nullptr) ? &output_stage_nhwc : &output_stage_nhwc; } else { _func = (output == nullptr) ? &output_stage_nhwc : &output_stage_nhwc; } break; } default: { ARM_COMPUTE_ERROR("Unsupported combination of types among the inputs."); } } } } Status NEDirectConvolutionLayerOutputStageKernel::validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, bias, output, result_fixedpoint_multiplier, result_shift, result_offset_after_shift)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), bias == nullptr ? nullptr : bias->clone().get(), output == nullptr ? nullptr : output->clone().get()).first); return Status{}; } void NEDirectConvolutionLayerOutputStageKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); ARM_COMPUTE_ERROR_ON(_func == nullptr); (*_func)(_input, _bias, window, _output, _result_fixedpoint_multiplier, _result_shift, _result_offset_after_shift); }