/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEDirectConvolutionLayerBiasAccumulateKernel.h" #include "arm_compute/core/AccessWindowStatic.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/NEON/NEFixedPoint.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include #include #include using namespace arm_compute; namespace { Status validate_arguments(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, bias); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::QS16, DataType::F16, DataType::QS32, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bias, 1, DataType::QS8, DataType::QS16, DataType::F16, DataType::QS32, DataType::F32); if(is_data_type_quantized(input->data_type())) { ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->data_type() == DataType::QS8 && bias->data_type() != DataType::QS8, "Wrong data type for bias"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->data_type() == DataType::QS16 && bias->data_type() != DataType::QS8, "Wrong data type for bias"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->data_type() == DataType::QS32 && bias->data_type() != DataType::QS16, "Wrong data type for bias"); } else { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias); } ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT_POSITION(input, bias); // Checks performed when output is configured if((output != nullptr) && (output->total_size() != 0)) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QS8, DataType::QS16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(bias, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT_POSITION(bias, output); } ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1); return Status{}; } std::pair validate_and_configure_window(ITensorInfo *input, ITensorInfo *bias, ITensorInfo *output) { bool window_changed = false; const unsigned int num_elems_processed_per_iteration = 16 / element_size_from_data_type(input->data_type()); // Configure kernel window Window win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration)); AccessWindowHorizontal input_access(input, 0, num_elems_processed_per_iteration); AccessWindowStatic bias_access(bias, 0, 0, bias->dimension(0), bias->dimension(1)); if(output != nullptr && (output->total_size() != 0)) { AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration); window_changed = update_window_and_padding(win, input_access, output_access, bias_access); output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape())); } else { window_changed = update_window_and_padding(win, input_access, bias_access); input_access.set_valid_region(win, ValidRegion(Coordinates(), input->tensor_shape())); } Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, win); } // Internal load inline float32x4_t internal_vld1q(const float *in) { return vld1q_f32(in); } inline qint8x16_t internal_vld1q(const qint8_t *in) { return vld1q_qs8(in); } inline qint16x8_t internal_vld1q(const qint16_t *in) { return vld1q_qs16(in); } inline qint32x4_t internal_vld1q(const qint32_t *in) { return vld1q_s32(in); } // Internal store inline void internal_vst1q(float *p, const float32x4_t &v) { vst1q_f32(p, v); } inline void internal_vst1q(qint8_t *p, const qint8x16_t &v) { vst1q_qs8(p, v); } inline void internal_vst1q(qint8_t *p, const qint16x8_t &v) { vst1_qs8(p, vqmovn_s16(v)); } inline void internal_vst1q(qint16_t *p, const qint16x8_t &v) { vst1q_qs16(p, v); } inline void internal_vst1q(qint32_t *p, const qint32x4_t &v) { vst1q_s32(p, v); } inline void internal_vst1q(qint16_t *p, const qint32x4_t &v) { vst1_qs16(p, vqmovn_qs32(v)); } // Internal vdup inline float32x4_t internal_vdupq_n(float v) { return vdupq_n_f32(v); } inline qint8x16_t internal_vdupq_n(qint8_t v) { return vdupq_n_qs8(v); } inline qint16x8_t internal_vdupq_n(qint16_t v) { return vdupq_n_qs16(v); } inline qint32x4_t internal_vdupq_n(qint32_t v) { return vdupq_n_qs32(v); } // Internal vadd inline float32x4_t internal_vqaddq(const float32x4_t &x, const float32x4_t &y) { return vaddq_f32(x, y); } inline qint8x16_t internal_vqaddq(const qint8x16_t &x, const qint8x16_t &y) { return vqaddq_qs8(x, y); } inline qint16x8_t internal_vqaddq(const qint16x8_t &x, const qint16x8_t &y) { return vqaddq_qs16(x, y); } inline qint32x4_t internal_vqaddq(const qint32x4_t &x, const qint32x4_t &y) { return vqaddq_qs32(x, y); } #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC inline float16x8_t internal_vld1q(const float16_t *in) { return vld1q_f16(in); } inline void internal_vst1q(float16_t *p, const float16x8_t &v) { vst1q_f16(p, v); } inline float16x8_t internal_vdupq_n(float16_t v) { return vdupq_n_f16(v); } inline float16x8_t internal_vqaddq(const float16x8_t &x, const float16x8_t &y) { return vaddq_f16(x, y); } #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ template void accumulate_bias(ITensor *input, const ITensor *bias, const Window window, ITensor *output) { Iterator in(input, window); if(in_place) // In place accumulate { execute_window_loop(window, [&](const Coordinates & id) { // Get bias and pointer to input const auto in_ptr = reinterpret_cast(in.ptr()); const auto vb = internal_vdupq_n(static_cast(*reinterpret_cast(bias->ptr_to_element(Coordinates(id.z()))))); // Accumulate bias internal_vst1q(in_ptr, internal_vqaddq(internal_vld1q(in_ptr), vb)); }, in); } else // Out of place accumulate { Iterator out(output, window); execute_window_loop(window, [&](const Coordinates & id) { // Get bias and pointer to input const auto in_ptr = reinterpret_cast(in.ptr()); const auto out_ptr = reinterpret_cast(out.ptr()); const auto vb = internal_vdupq_n(static_cast(*reinterpret_cast(bias->ptr_to_element(Coordinates(id.z()))))); // Accumulate bias internal_vst1q(out_ptr, internal_vqaddq(internal_vld1q(in_ptr), vb)); }, in, out); } } } // namespace NEDirectConvolutionLayerBiasAccumulateKernel::NEDirectConvolutionLayerBiasAccumulateKernel() : _func(nullptr), _input(nullptr), _bias(nullptr), _output(nullptr) { } void NEDirectConvolutionLayerBiasAccumulateKernel::configure(ITensor *input, const ITensor *bias, ITensor *output) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, bias); // Auto-initialize output output if required if(output != nullptr) { // Output tensor auto initialization if not yet initialized auto_init_if_empty(*output->info(), *input->info()); } // Perform validation step ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), bias->info(), (output == nullptr) ? nullptr : output->info())); _func = nullptr; _bias = bias; _input = input; _output = output; // Configure kernel window auto win_config = validate_and_configure_window(input->info(), bias->info(), (output == nullptr) ? nullptr : output->info()); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); INEKernel::configure(win_config.second); // Set appropriate function switch(input->info()->data_type()) { case DataType::QS8: { _func = (output == nullptr) ? &accumulate_bias : &accumulate_bias; break; } case DataType::QS16: { if(bias->info()->data_type() == DataType::QS8) { _func = (output == nullptr) ? &accumulate_bias : &accumulate_bias; } else { ARM_COMPUTE_ERROR("Not implemented"); } break; } case DataType::QS32: { _func = (output == nullptr) ? &accumulate_bias : &accumulate_bias; break; } #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F16: { _func = (output == nullptr) ? &accumulate_bias : &accumulate_bias; break; } #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ case DataType::F32: { _func = (output == nullptr) ? &accumulate_bias : &accumulate_bias; break; } default: { ARM_COMPUTE_ERROR("Unsupported combination of types among the inputs."); break; } } } Status NEDirectConvolutionLayerBiasAccumulateKernel::validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, bias, output)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), bias->clone().get(), output == nullptr ? nullptr : output->clone().get()).first); return Status{}; } void NEDirectConvolutionLayerBiasAccumulateKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); ARM_COMPUTE_ERROR_ON(_func == nullptr); (*_func)(_input, _bias, window, _output); }