/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEDequantizationLayerKernel.h" #include "arm_compute/core/AccessWindowStatic.h" #include "arm_compute/core/CPP/Validate.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/NEON/NEAsymm.h" #include "arm_compute/core/NEON/NESymm.h" #include "arm_compute/core/NEON/wrapper/wrapper.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include namespace arm_compute { namespace { Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_PER_CHANNEL, DataType::QSYMM8, DataType::QSYMM16); if(output->tensor_shape().total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(output); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output); } return Status{}; } std::tuple validate_and_configure_window(ITensorInfo *input, ITensorInfo *output) { // Configure kernel window Window win = calculate_max_window(*input, Steps()); // Output tensor auto initialization if not yet initialized auto_init_if_empty(*output, input->tensor_shape(), 1, DataType::F32); // NEDequantizationLayerKernel doesn't need padding so update_window_and_padding() can be skipped Coordinates coord; coord.set_num_dimensions(output->num_dimensions()); output->set_valid_region(ValidRegion(coord, output->tensor_shape())); return std::make_tuple(Status{}, win); } template inline void store_result(T *ptr, const float32x4x4_t &v) { ARM_COMPUTE_UNUSED(ptr, v); } template <> inline void store_result(float *ptr, const float32x4x4_t &v) { wrapper::vstore(ptr, v.val[0]); wrapper::vstore(ptr + 4, v.val[1]); wrapper::vstore(ptr + 8, v.val[2]); wrapper::vstore(ptr + 12, v.val[3]); } #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC template <> inline void store_result(float16_t *ptr, const float32x4x4_t &v) { wrapper::vstore(ptr, vcombine_f16(vcvt_f16_f32(v.val[0]), vcvt_f16_f32(v.val[1]))); wrapper::vstore(ptr + 8, vcombine_f16(vcvt_f16_f32(v.val[2]), vcvt_f16_f32(v.val[3]))); } #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ template inline void store_result(T *ptr, const float32x4x2_t &v) { ARM_COMPUTE_UNUSED(ptr, v); } template <> inline void store_result(float *ptr, const float32x4x2_t &v) { wrapper::vstore(ptr, v.val[0]); wrapper::vstore(ptr + 4, v.val[1]); } #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC template <> inline void store_result(float16_t *ptr, const float32x4x2_t &v) { wrapper::vstore(ptr, vcombine_f16(vcvt_f16_f32(v.val[0]), vcvt_f16_f32(v.val[1]))); } #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ template void run_dequantization_qasymm8(const ITensor *input, ITensor *output, const Window &window) { const UniformQuantizationInfo &qinfo = input->info()->quantization_info().uniform(); const float scale = qinfo.scale; const int32_t offset = qinfo.offset; const int window_step_x = 16; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); // Collapse window and reset first dimension to handle tail calculations manually Window win_collapsed = window.collapse_if_possible(window, Window::DimZ); win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1)); // Create iterators Iterator in(input, win_collapsed); Iterator out(output, win_collapsed); execute_window_loop(win_collapsed, [&](const Coordinates &) { const auto in_ptr = reinterpret_cast(in.ptr()); const auto out_ptr = reinterpret_cast(out.ptr()); int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const auto vin = wrapper::vloadq(in_ptr + x); const auto vdeq = vdequantize(vin, scale, offset); store_result(reinterpret_cast(out_ptr + x), vdeq); } // Compute left-over elements for(; x < window_end_x; ++x) { uint8_t val = *(in_ptr + x); *(out_ptr + x) = static_cast(dequantize(val, scale, offset)); } }, in, out); } template void run_dequantization_qasymm8_per_channel_nchw(const ITensor *input, ITensor *output, const Window &window) { const std::vector scale = input->info()->quantization_info().scale(); const std::vector offset = input->info()->quantization_info().offset(); const int window_step_x = 16; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); // Reset first dimension to handle tail calculations manually Window win(window); win.set(Window::DimX, Window::Dimension(0, 1, 1)); // Create iterators Iterator in(input, win); Iterator out(output, win); execute_window_loop(win, [&](const Coordinates & id) { const auto in_ptr = reinterpret_cast(in.ptr()); const auto out_ptr = reinterpret_cast(out.ptr()); int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const auto vin = wrapper::vloadq(in_ptr + x); const auto vdeq = vdequantize(vin, scale[id.z()], offset[id.z()]); store_result(reinterpret_cast(out_ptr + x), vdeq); } // Compute left-over elements for(; x < window_end_x; ++x) { uint8_t val = *(in_ptr + x); *(out_ptr + x) = static_cast(dequantize(val, scale[id.z()], offset[id.z()])); } }, in, out); } template void run_dequantization_qasymm8_per_channel_nhwc(const ITensor *input, ITensor *output, const Window &window) { const std::vector scale = input->info()->quantization_info().scale(); const std::vector offset = input->info()->quantization_info().offset(); const int window_step_x = 16; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); // Reset first dimension to handle tail calculations manually Window win(window); win.set(Window::DimX, Window::Dimension(0, 1, 1)); // Create iterators Iterator in(input, win); Iterator out(output, win); execute_window_loop(win, [&](const Coordinates &) { const auto in_ptr = reinterpret_cast(in.ptr()); const auto out_ptr = reinterpret_cast(out.ptr()); int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const float32x4x4_t vscale = { { scale[x + 0], scale[x + 1], scale[x + 2], scale[x + 3], scale[x + 4], scale[x + 5], scale[x + 6], scale[x + 7], scale[x + 8], scale[x + 9], scale[x + 10], scale[x + 11], scale[x + 12], scale[x + 13], scale[x + 14], scale[x + 15] } }; const int32x4x4_t voffset = { { offset[x + 0], offset[x + 1], offset[x + 2], offset[x + 3], offset[x + 4], offset[x + 5], offset[x + 6], offset[x + 7], offset[x + 8], offset[x + 9], offset[x + 10], offset[x + 11], offset[x + 12], offset[x + 13], offset[x + 14], offset[x + 15] } }; const auto vin = wrapper::vloadq(in_ptr + x); const auto vdeq = vdequantize(vin, vscale, voffset); store_result(reinterpret_cast(out_ptr + x), vdeq); } // Compute left-over elements for(; x < window_end_x; ++x) { uint8_t val = *(in_ptr + x); *(out_ptr + x) = static_cast(dequantize(val, scale[x], offset[x])); } }, in, out); } template void run_dequantization_qsymm8(const ITensor *input, ITensor *output, const Window &window) { const UniformQuantizationInfo &qinfo = input->info()->quantization_info().uniform(); const float scale = qinfo.scale; const int window_step_x = 16; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); // Collapse window and reset first dimension to handle tail calculations manually Window win_collapsed = window.collapse_if_possible(window, Window::DimZ); win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1)); // Create iterators Iterator in(input, win_collapsed); Iterator out(output, win_collapsed); execute_window_loop(win_collapsed, [&](const Coordinates &) { const auto in_ptr = reinterpret_cast(in.ptr()); const auto out_ptr = reinterpret_cast(out.ptr()); int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const auto vin = wrapper::vloadq(in_ptr + x); const auto vdeq = vdequantize(vin, scale); store_result(reinterpret_cast(out_ptr + x), vdeq); } // Compute left-over elements for(; x < window_end_x; ++x) { int8_t val = *(in_ptr + x); *(out_ptr + x) = static_cast(dequantize(val, scale)); } }, in, out); } template void run_dequantization_qsymm16(const ITensor *input, ITensor *output, const Window &window) { const UniformQuantizationInfo &qinfo = input->info()->quantization_info().uniform(); const float scale = qinfo.scale; const int window_step_x = 8; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); // Collapse window and reset first dimension to handle tail calculations manually Window win_collapsed = window.collapse_if_possible(window, Window::DimZ); win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1)); // Create iterators Iterator in(input, win_collapsed); Iterator out(output, win_collapsed); execute_window_loop(win_collapsed, [&](const Coordinates &) { const auto in_ptr = reinterpret_cast(in.ptr()); const auto out_ptr = reinterpret_cast(out.ptr()); int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const auto vin = wrapper::vloadq(in_ptr + x); const auto vdeq = vdequantize_int16(vin, scale); store_result(reinterpret_cast(out_ptr + x), vdeq); } // Compute left-over elements for(; x < window_end_x; ++x) { int16_t val = *(in_ptr + x); *(out_ptr + x) = static_cast(dequantize_qsymm16(val, scale)); } }, in, out); } template void run_dequantization_core(const ITensor *input, ITensor *output, const Window &window) { switch(input->info()->data_type()) { case DataType::QASYMM8: run_dequantization_qasymm8(input, output, window); break; case DataType::QASYMM8_PER_CHANNEL: input->info()->data_layout() == DataLayout::NHWC ? run_dequantization_qasymm8_per_channel_nhwc(input, output, window) : run_dequantization_qasymm8_per_channel_nchw(input, output, window); break; case DataType::QSYMM8: run_dequantization_qsymm8(input, output, window); break; case DataType::QSYMM16: run_dequantization_qsymm16(input, output, window); break; default: ARM_COMPUTE_ERROR("Unsupported data type."); } } } // namespace NEDequantizationLayerKernel::NEDequantizationLayerKernel() : _input(nullptr), _output(nullptr) { } void NEDequantizationLayerKernel::configure(const ITensor *input, ITensor *output) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info())); _input = input; _output = output; // Configure kernel window auto win_config = validate_and_configure_window(input->info(), output->info()); ARM_COMPUTE_ERROR_THROW_ON(std::get<0>(win_config)); INEKernel::configure(std::get<1>(win_config)); } Status NEDequantizationLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output)); ARM_COMPUTE_RETURN_ON_ERROR(std::get<0>(validate_and_configure_window(input->clone().get(), output->clone().get()))); return Status{}; } void NEDequantizationLayerKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); switch(_output->info()->data_type()) { case DataType::F32: run_dequantization_core(_input, _output, window); break; #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F16: run_dequantization_core(_input, _output, window); break; #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ default: ARM_COMPUTE_ERROR("Unsupported data type."); } } } // namespace arm_compute