/* * Copyright (c) 2019-2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/core/NEON/kernels/NEDepthwiseConvolutionLayerNativeKernel.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/core/utils/quantization/AsymmHelpers.h" #include "src/core/AccessWindowStatic.h" #include "src/core/CPP/Validate.h" #include "src/core/NEON/kernels/convolution/depthwise/impl_qa8_qa8.hpp" #include "src/core/NEON/wrapper/traits.h" #include "src/core/NEON/wrapper/wrapper.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/WindowHelpers.h" #include "support/ToolchainSupport.h" namespace arm_compute { namespace { constexpr auto data_layout = DataLayout::NHWC; const size_t width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const size_t height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); const size_t channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL); constexpr auto dim_manual_loop = Window::Dimension(0, 0, 0); constexpr auto dim_single_unit_step = Window::Dimension(0, 1, 1); constexpr size_t vector_size = 8; struct DepthwiseConvolutionRunInfo { const size_t num_read_elements_per_iteration; const uint32_t x_start; const uint32_t x_end; const uint32_t x_step; const uint32_t x_leftover_start; const size_t input_stride_y; const size_t input_stride_z; const size_t input_max_offset; const size_t weights_width; const size_t weights_height; const size_t weights_stride_y; const size_t weights_stride_z; const size_t conv_stride_x; const size_t conv_stride_y; const size_t conv_pad_left; const size_t conv_pad_top; const size_t input_height; const size_t input_width; const size_t input_depth; DepthwiseConvolutionRunInfo(const ITensorInfo &input, const ITensorInfo &weights, const PadStrideInfo &conv_info, const Window &w, uint32_t depth_multiplier = 1) : num_read_elements_per_iteration((depth_multiplier == 1 ? (vector_size / element_size_from_data_type(input.data_type())) : 1)), x_start(w.x().start()), x_end(w.x().end()), x_step(static_cast(num_read_elements_per_iteration * depth_multiplier)), x_leftover_start(std::max(static_cast(w.x().end()) - static_cast(x_step) + 1, int32_t(0))), input_stride_y(input.strides_in_bytes().y()), input_stride_z(input.strides_in_bytes().z()), input_max_offset(input.strides_in_bytes().z() * input.dimension(height_idx) - (input.padding().bottom + input.padding().top) * input.strides_in_bytes().y()), weights_width(weights.dimension(width_idx)), weights_height(weights.dimension(height_idx)), weights_stride_y(weights.strides_in_bytes().y()), weights_stride_z(weights.strides_in_bytes().z()), conv_stride_x(conv_info.stride().first), conv_stride_y(conv_info.stride().second), conv_pad_left(conv_info.pad_left()), conv_pad_top(conv_info.pad_top()), input_height(input.dimension(height_idx)), input_width(input.dimension(width_idx)), input_depth(input.dimension(channel_idx)) { } }; inline bool is_valid_input_region(int32_t base_w, uint32_t base_h, uint32_t w, uint32_t h, const DepthwiseConvolutionRunInfo &run_info, const Size2D &dilation) { const int32_t current_h = base_h + h * dilation.y(); const bool is_valid_h = current_h >= 0 && current_h < static_cast(run_info.input_height); const int32_t current_w = base_w + w * dilation.x(); const bool is_valid_w = current_w >= 0 && current_w < static_cast(run_info.input_width); return is_valid_h && is_valid_w; } template void depthwise_loop_multiplier1_fp(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, const Size2D &dilation, const Window &window, bool has_biases) { constexpr auto element_per_vector = vector_size / sizeof(T); using VectorType = typename wrapper::traits::neon_vector::type; using TagType = typename wrapper::traits::neon_vector::tag_type; const auto run_info = DepthwiseConvolutionRunInfo(*input->info(), *weights->info(), conv_info, window); const VectorType zero_vector = wrapper::vdup_n(static_cast(0), TagType{}); Window execution_window = window; execution_window.set(Window::DimX, dim_single_unit_step); Window win_input = window; win_input.set(Window::DimX, dim_manual_loop); win_input.set(Window::DimY, dim_manual_loop); win_input.set(Window::DimZ, dim_manual_loop); Window win_weights = win_input; win_weights.set(Window::DimW, dim_manual_loop); Window win_output = window; win_output.set(Window::DimX, dim_manual_loop); Iterator input_it(input, win_input); Iterator weights_it(weights, win_weights); Iterator output_it(output, win_output); Iterator biases_it{}; if(has_biases) { biases_it = Iterator(biases, win_weights); } execute_window_loop(execution_window, [&](const Coordinates & id) { const int32_t input_y = id.y() * run_info.conv_stride_x - run_info.conv_pad_left; const int32_t input_z = id.z() * run_info.conv_stride_y - run_info.conv_pad_top; const int64_t base_input_offset = input_y * run_info.input_stride_y + input_z * run_info.input_stride_z; auto const base_weights_ptr = weights_it.ptr(); uint32_t x = run_info.x_start; for(; x < run_info.x_leftover_start; x += run_info.x_step) { VectorType acc = zero_vector; auto weights_ptr = base_weights_ptr; int64_t input_offset = base_input_offset; for(uint32_t h = 0; h < run_info.weights_height; ++h) { int64_t offs = input_offset + x * sizeof(T); for(uint32_t w = 0; w < run_info.weights_width; ++w) { const bool is_valid_region = is_valid_input_region(input_y, input_z, w, h, run_info, dilation); const auto input_vals = is_valid_region ? wrapper::vload(reinterpret_cast(input_it.ptr() + std::min(static_cast(offs), run_info.input_max_offset))) : zero_vector; const auto weights_vals = wrapper::vload(reinterpret_cast(weights_ptr + w * run_info.weights_stride_y) + x); acc = wrapper::vmla(acc, weights_vals, input_vals); offs += dilation.x() * run_info.input_stride_y; } weights_ptr += run_info.weights_stride_z; input_offset += dilation.y() * run_info.input_stride_z; } if(has_biases) { const auto biases_vals = wrapper::vload(reinterpret_cast(biases_it.ptr()) + x); acc = wrapper::vadd(acc, biases_vals); } wrapper::vstore(reinterpret_cast(output_it.ptr()) + x, acc); } for(; x < run_info.x_end; ++x) { auto acc_scalar = T{ 0 }; auto weights_ptr = base_weights_ptr; int64_t input_offset = base_input_offset; for(size_t h = 0; h < run_info.weights_height; ++h) { int64_t offs = input_offset + x * sizeof(T); for(size_t w = 0; w < run_info.weights_width; ++w) { const bool is_valid_region = is_valid_input_region(input_y, input_z, w, h, run_info, dilation); const auto input_vals = is_valid_region ? *reinterpret_cast(input_it.ptr() + std::min(static_cast(offs), run_info.input_max_offset)) : 0; const auto weights_vals = *(reinterpret_cast(weights_ptr + w * run_info.weights_stride_y) + x); acc_scalar += (input_vals * weights_vals); offs += dilation.x() * run_info.input_stride_y; } weights_ptr += run_info.weights_stride_z; input_offset += dilation.y() * run_info.input_stride_z; } if(has_biases) { const auto biases_vals = *(reinterpret_cast(biases_it.ptr()) + x); acc_scalar += biases_vals; } *(reinterpret_cast(output_it.ptr()) + x) = acc_scalar; } }, input_it, weights_it, biases_it, output_it); } template void depthwise_loop_generic_fp(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, const Size2D &dilation, unsigned int depth_multiplier, const Window &window, bool has_biases) { const auto run_info = DepthwiseConvolutionRunInfo(*input->info(), *weights->info(), conv_info, window, depth_multiplier); Window execution_window = window; execution_window.set(Window::DimX, Window::Dimension(0, run_info.input_depth, 1)); Window win_input = execution_window; win_input.set(Window::DimX, Window::Dimension(0, run_info.input_depth, 1)); win_input.set(Window::DimY, dim_manual_loop); win_input.set(Window::DimZ, dim_manual_loop); Window win_weights = window; win_weights.set_dimension_step(Window::DimX, run_info.x_step); win_weights.set(Window::DimY, dim_manual_loop); win_weights.set(Window::DimZ, dim_manual_loop); win_weights.set(Window::DimW, dim_manual_loop); Window win_output = window; win_output.set_dimension_step(Window::DimX, run_info.x_step); Iterator input_it(input, win_input); Iterator weights_it(weights, win_weights); Iterator output_it(output, win_output); Iterator biases_it{}; if(has_biases) { biases_it = Iterator(biases, win_weights); } execute_window_loop(execution_window, [&](const Coordinates & id) { std::vector acc(depth_multiplier, static_cast(0)); const int input_y = id.y() * run_info.conv_stride_x - run_info.conv_pad_left; const int input_z = id.z() * run_info.conv_stride_y - run_info.conv_pad_top; int input_offset = input_y * run_info.input_stride_y + input_z * run_info.input_stride_z; auto weights_ptr = weights_it.ptr(); for(size_t h = 0; h < run_info.weights_height; ++h) { int offs = input_offset; for(size_t w = 0; w < run_info.weights_width; ++w) { const bool is_valid_region = is_valid_input_region(input_y, input_z, w, h, run_info, dilation); const auto input_val = is_valid_region ? *(reinterpret_cast(input_it.ptr() + std::min(static_cast(offs), run_info.input_max_offset))) : T(0); for(size_t m = 0; m < depth_multiplier; ++m) { const auto weights_val = *(reinterpret_cast(weights_ptr + m * sizeof(T) + w * run_info.weights_stride_y)); acc.at(m) = support::cpp11::fma(weights_val, input_val, acc.at(m)); } offs += dilation.x() * run_info.input_stride_y; } weights_ptr += run_info.weights_stride_z; input_offset += dilation.y() * run_info.input_stride_z; } if(has_biases) { for(size_t m = 0; m < depth_multiplier; ++m) { const auto biases_val = *(reinterpret_cast(biases_it.ptr() + m * sizeof(T))); *(reinterpret_cast(output_it.ptr() + m * sizeof(T))) = acc.at(m) + biases_val; } } else { for(size_t m = 0; m < depth_multiplier; ++m) { *(reinterpret_cast(output_it.ptr() + m * sizeof(T))) = acc.at(m); } } }, input_it, weights_it, biases_it, output_it); } template void depthwise_loop_multiplier1_quantized(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, const Size2D &dilation, std::vector output_multiplier, std::vector output_shift, const Window &window, bool has_biases) { constexpr auto element_per_vector = vector_size / sizeof(T); using VectorType = typename wrapper::traits::neon_vector::type; using TagType = typename wrapper::traits::neon_vector::tag_type; using AccType = int32_t; using AccArrayType = std::array; const auto out_of_bound_value = PixelValue(static_cast(0), input->info()->data_type(), input->info()->quantization_info()).get(); const auto out_of_bound_vector = wrapper::vdup_n(static_cast(out_of_bound_value), TagType{}); const auto run_info = DepthwiseConvolutionRunInfo(*input->info(), *weights->info(), conv_info, window); const int32_t input_qoffset = input->info()->quantization_info().uniform().offset; const int32_t weights_qoffset = weights->info()->quantization_info().uniform().offset; const int32_t output_qoffset = output->info()->quantization_info().uniform().offset; const int32_t k_offset = run_info.weights_width * run_info.weights_height * input_qoffset * weights_qoffset; Window execution_window = window; execution_window.set(Window::DimX, dim_single_unit_step); Window win_input = window; win_input.set(Window::DimX, dim_manual_loop); win_input.set(Window::DimY, dim_manual_loop); win_input.set(Window::DimZ, dim_manual_loop); Window win_weights = win_input; win_weights.set(Window::DimW, dim_manual_loop); Window win_output = window; win_output.set(Window::DimX, dim_manual_loop); Iterator input_it(input, win_input); Iterator weights_it(weights, win_weights); Iterator output_it(output, win_output); Iterator biases_it{}; if(has_biases) { biases_it = Iterator(biases, win_weights); } execute_window_loop(execution_window, [&](const Coordinates & id) { const int32_t input_y = id.y() * run_info.conv_stride_x - run_info.conv_pad_left; const int32_t input_z = id.z() * run_info.conv_stride_y - run_info.conv_pad_top; const int64_t base_input_offset = input_y * run_info.input_stride_y + input_z * run_info.input_stride_z; auto const base_weights_ptr = weights_it.ptr(); size_t x = run_info.x_start; for(; x < run_info.x_leftover_start; x += run_info.x_step) { AccArrayType acc{}; AccArrayType in_sum{}; AccArrayType we_sum{}; auto weights_ptr = base_weights_ptr; auto input_offset = base_input_offset; for(size_t h = 0; h < run_info.weights_height; ++h) { int64_t offs = input_offset + x * sizeof(T); for(size_t w = 0; w < run_info.weights_width; ++w) { const bool is_valid_region = is_valid_input_region(input_y, input_z, w, h, run_info, dilation); const auto input_vals = is_valid_region ? wrapper::vload(reinterpret_cast(input_it.ptr() + std::min(static_cast(offs), run_info.input_max_offset))) : out_of_bound_vector; const auto weights_vals = wrapper::vload(reinterpret_cast(weights_ptr + w * run_info.weights_stride_y) + x); for(size_t i = 0; i < element_per_vector; ++i) { acc.at(i) += input_vals[i] * weights_vals[i]; in_sum.at(i) += input_vals[i]; we_sum.at(i) += weights_vals[i]; } offs += dilation.x() * run_info.input_stride_y; } weights_ptr += run_info.weights_stride_z; input_offset += dilation.y() * run_info.input_stride_z; } VectorType out_vals = wrapper::vdup_n(static_cast(0), TagType{}); for(size_t i = 0; i < element_per_vector; ++i) { acc.at(i) -= in_sum.at(i) * weights_qoffset; acc.at(i) -= we_sum.at(i) * input_qoffset; acc.at(i) += k_offset; if(has_biases) { acc.at(i) += *(reinterpret_cast(biases_it.ptr() + i * sizeof(int32_t)) + x); } const int32_t out_mul = output_multiplier.at(x + i); const int32_t out_shift = output_shift.at(x + i); if(out_shift < 0) { acc.at(i) = saturating_doubling_high_mul(acc.at(i) * (1 << (-out_shift)), out_mul) + output_qoffset; } else { acc.at(i) = rounding_divide_by_exp2(saturating_doubling_high_mul(acc.at(i), out_mul), out_shift) + output_qoffset; } out_vals[i] = static_cast(utility::clamp(acc.at(i))); } wrapper::vstore(reinterpret_cast(output_it.ptr()) + x, out_vals); } // left-over for(; x < run_info.x_end; ++x) { AccType acc = 0; AccType in_sum = 0; AccType we_sum = 0; auto weights_ptr = base_weights_ptr; auto input_offset = base_input_offset; for(size_t h = 0; h < run_info.weights_height; ++h) { int64_t offs = input_offset + x * sizeof(T); for(size_t w = 0; w < run_info.weights_width; ++w) { const bool is_valid_region = is_valid_input_region(input_y, input_z, w, h, run_info, dilation); const auto input_val = is_valid_region ? *reinterpret_cast(input_it.ptr() + std::min(static_cast(offs), run_info.input_max_offset)) : out_of_bound_value; const auto weights_val = *(reinterpret_cast(weights_ptr + w * run_info.weights_stride_y) + x); acc += input_val * weights_val; in_sum += input_val; we_sum += weights_val; offs += dilation.x() * run_info.input_stride_y; } weights_ptr += run_info.weights_stride_z; input_offset += dilation.y() * run_info.input_stride_z; } T out_vals{ 0 }; acc -= in_sum * weights_qoffset; acc -= we_sum * input_qoffset; acc += k_offset; if(has_biases) { acc += *(reinterpret_cast(biases_it.ptr()) + x); } const int32_t out_mul = output_multiplier.at(x); const int32_t out_shift = output_shift.at(x); if(out_shift < 0) { acc = saturating_doubling_high_mul(acc * (1 << (-out_shift)), out_mul) + output_qoffset; } else { acc = rounding_divide_by_exp2(saturating_doubling_high_mul(acc, out_mul), out_shift) + output_qoffset; } out_vals = static_cast(utility::clamp(acc)); *(reinterpret_cast(output_it.ptr()) + x) = out_vals; } }, input_it, weights_it, biases_it, output_it); } template void depthwise_loop_generic_quantized(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, const Size2D &dilation, unsigned int depth_multiplier, std::vector output_multiplier, std::vector output_shift, const Window &window, bool has_biases) { using AccType = int32_t; const auto run_info = DepthwiseConvolutionRunInfo(*input->info(), *weights->info(), conv_info, window, depth_multiplier); const auto out_of_bound_value = PixelValue(static_cast(0), input->info()->data_type(), input->info()->quantization_info()).get(); const int32_t input_qoffset = input->info()->quantization_info().uniform().offset; const int32_t weights_qoffset = weights->info()->quantization_info().uniform().offset; const int32_t output_qoffset = output->info()->quantization_info().uniform().offset; const int32_t k_offset = run_info.weights_width * run_info.weights_height * input_qoffset * weights_qoffset; Window execution_window = window; execution_window.set(Window::DimX, Window::Dimension(0, run_info.input_depth, 1)); Window win_input = execution_window; win_input.set(Window::DimY, dim_manual_loop); win_input.set(Window::DimZ, dim_manual_loop); Window win_weights = window; win_weights.set_dimension_step(Window::DimX, run_info.x_step); win_weights.set(Window::DimY, dim_manual_loop); win_weights.set(Window::DimZ, dim_manual_loop); win_weights.set(Window::DimW, dim_manual_loop); Window win_output = window; win_output.set_dimension_step(Window::DimX, run_info.x_step); Iterator input_it(input, win_input); Iterator weights_it(weights, win_weights); Iterator output_it(output, win_output); Iterator biases_it{}; if(has_biases) { biases_it = Iterator(biases, win_weights); } execute_window_loop(execution_window, [&](const Coordinates & id) { std::vector acc(depth_multiplier, 0); std::vector we_sum(depth_multiplier, 0); AccType in_sum = 0; const int32_t input_y = id.y() * run_info.conv_stride_x - run_info.conv_pad_left; const int32_t input_z = id.z() * run_info.conv_stride_y - run_info.conv_pad_top; int64_t input_offset = input_y * run_info.input_stride_y + input_z * run_info.input_stride_z; auto weights_ptr = weights_it.ptr(); for(size_t h = 0; h < run_info.weights_height; ++h) { int offs = input_offset; for(size_t w = 0; w < run_info.weights_width; ++w) { const bool is_valid_region = is_valid_input_region(input_y, input_z, w, h, run_info, dilation); const auto input_val = is_valid_region ? *(reinterpret_cast(input_it.ptr() + std::min(static_cast(offs), run_info.input_max_offset))) : out_of_bound_value; for(size_t m = 0; m < depth_multiplier; ++m) { const auto weights_val = *(reinterpret_cast(weights_ptr + m * sizeof(T) + w * run_info.weights_stride_y)); acc.at(m) += input_val * weights_val; we_sum.at(m) += weights_val; } offs += dilation.x() * run_info.input_stride_y; in_sum += input_val; } weights_ptr += run_info.weights_stride_z; input_offset += dilation.y() * run_info.input_stride_z; } for(size_t m = 0; m < depth_multiplier; ++m) { acc.at(m) -= in_sum * weights_qoffset; acc.at(m) -= we_sum.at(m) * input_qoffset; acc.at(m) += k_offset; if(has_biases) { acc.at(m) += *(reinterpret_cast(biases_it.ptr() + m * sizeof(int32_t))); } const int32_t out_mul = output_multiplier.at(id.x() * depth_multiplier + m); const int32_t out_shift = output_shift.at(id.x() * depth_multiplier + m); if(out_shift < 0) { acc.at(m) = saturating_doubling_high_mul(acc.at(m) * (1 << (-out_shift)), out_mul) + output_qoffset; } else { acc.at(m) = rounding_divide_by_exp2(saturating_doubling_high_mul(acc.at(m), out_mul), out_shift) + output_qoffset; } *(reinterpret_cast(output_it.ptr() + m * sizeof(T))) = static_cast(utility::clamp(acc.at(m))); } }, input_it, weights_it, biases_it, output_it); } template void depthwise_loop_pow2_quantized_per_tensor(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, const Size2D &dilation, unsigned int depth_multiplier, std::vector output_multiplier, std::vector output_shift, const Window &window, bool has_biases) { constexpr int half_vec = vector_size / 2; using AccType = int32_t; using AccVectorType = typename wrapper::traits::neon_vector::type; using AccVectorTagType = typename wrapper::traits::neon_vector::tag_type; using TagType = typename wrapper::traits::neon_vector::tag_type; const auto run_info = DepthwiseConvolutionRunInfo(*input->info(), *weights->info(), conv_info, window, depth_multiplier); const auto input_qoffset_vec = wrapper::vreinterpret(wrapper::vmovl(wrapper::vdup_n(static_cast(input->info()->quantization_info().uniform().offset), TagType{}))); const auto weights_qoffset_vec = wrapper::vreinterpret(wrapper::vmovl(wrapper::vdup_n(static_cast(weights->info()->quantization_info().uniform().offset), TagType{}))); const auto output_qoffset_vec = wrapper::vdup_n(output->info()->quantization_info().uniform().offset, arm_compute::wrapper::traits::vector_128_tag{}); const auto lower = wrapper::vdup_n(static_cast(std::numeric_limits::lowest()), AccVectorTagType{}); const auto upper = wrapper::vdup_n(static_cast(std::numeric_limits::max()), AccVectorTagType{}); const auto zero = wrapper::vdup_n(static_cast(0), AccVectorTagType{}); const auto out_mul = output_multiplier.at(0); const auto out_shift = output_shift.at(0); Window execution_window = window; execution_window.set(Window::DimX, Window::Dimension(0, run_info.input_depth, 1)); Window win_input = execution_window; win_input.set(Window::DimY, dim_manual_loop); win_input.set(Window::DimZ, dim_manual_loop); Window win_weights = window; win_weights.set_dimension_step(Window::DimX, run_info.x_step); win_weights.set(Window::DimY, dim_manual_loop); win_weights.set(Window::DimZ, dim_manual_loop); win_weights.set(Window::DimW, dim_manual_loop); Window win_output = window; win_output.set_dimension_step(Window::DimX, run_info.x_step); Iterator input_it(input, win_input); Iterator weights_it(weights, win_weights); Iterator output_it(output, win_output); Iterator biases_it{}; if(has_biases) { biases_it = Iterator(biases, win_weights); } std::vector acc0(depth_multiplier / vector_size); std::vector acc1(depth_multiplier / vector_size); execute_window_loop(execution_window, [&](const Coordinates & id) { std::fill(begin(acc0), end(acc0), zero); std::fill(begin(acc1), end(acc1), zero); const int32_t input_y = id.y() * run_info.conv_stride_x - run_info.conv_pad_left; const int32_t input_z = id.z() * run_info.conv_stride_y - run_info.conv_pad_top; int64_t input_offset = input_y * run_info.input_stride_y + input_z * run_info.input_stride_z; auto weights_ptr = weights_it.ptr(); for(size_t h = 0; h < run_info.weights_height; ++h) { const int32_t current_h = input_z + h * dilation.y(); if(current_h >= 0 && current_h < static_cast(run_info.input_height)) { int offs = input_offset; for(size_t w = 0; w < run_info.weights_width; ++w) { const int32_t current_w = input_y + w * dilation.x(); if(current_w >= 0 && current_w < static_cast(run_info.input_width)) { const auto input_8x8 = wrapper::vdup_n(*(reinterpret_cast(input_it.ptr() + std::min(static_cast(offs), run_info.input_max_offset))), TagType{}); const auto input_s16x8 = wrapper::vreinterpret(wrapper::vmovl(input_8x8)); const auto input_no_offs = wrapper::vsub(input_s16x8, input_qoffset_vec); for(size_t m = 0, i = 0; m < depth_multiplier; m += vector_size, ++i) { const auto weights_8x8 = wrapper::vload(reinterpret_cast(weights_ptr + m * sizeof(T) + w * run_info.weights_stride_y)); const auto weights_s16x8 = wrapper::vreinterpret(wrapper::vmovl(weights_8x8)); const auto weights_no_offs = wrapper::vsub(weights_s16x8, weights_qoffset_vec); acc0.at(i) = wrapper::vmlal(acc0.at(i), wrapper::vgetlow(input_no_offs), wrapper::vgetlow(weights_no_offs)); acc1.at(i) = wrapper::vmlal(acc1.at(i), wrapper::vgethigh(input_no_offs), wrapper::vgethigh(weights_no_offs)); } } offs += dilation.x() * run_info.input_stride_y; } } weights_ptr += run_info.weights_stride_z; input_offset += dilation.y() * run_info.input_stride_z; } for(size_t m = 0, i = 0; m < depth_multiplier; m += vector_size, ++i) { if(has_biases) { const auto bias_val0 = wrapper::vloadq(reinterpret_cast(biases_it.ptr() + m * sizeof(int32_t))); const auto bias_val1 = wrapper::vloadq(reinterpret_cast(biases_it.ptr() + (m + half_vec) * sizeof(int32_t))); acc0.at(i) = wrapper::vadd(acc0.at(i), bias_val0); acc1.at(i) = wrapper::vadd(acc1.at(i), bias_val1); } if(out_shift < 0) { acc0.at(i) = wrapper::vadd(saturating_doubling_high_mul(acc0.at(i) * (1 << (-out_shift)), out_mul), output_qoffset_vec); acc1.at(i) = wrapper::vadd(saturating_doubling_high_mul(acc1.at(i) * (1 << (-out_shift)), out_mul), output_qoffset_vec); } else { acc0.at(i) = wrapper::vadd(rounding_divide_by_exp2(saturating_doubling_high_mul(acc0.at(i), out_mul), out_shift), output_qoffset_vec); acc1.at(i) = wrapper::vadd(rounding_divide_by_exp2(saturating_doubling_high_mul(acc1.at(i), out_mul), out_shift), output_qoffset_vec); } acc0.at(i) = wrapper::vmin(wrapper::vmax(acc0.at(i), lower), upper); acc1.at(i) = wrapper::vmin(wrapper::vmax(acc1.at(i), lower), upper); const auto out_val = wrapper::vcombine(wrapper::vmovn(acc0.at(i)), wrapper::vmovn(acc1.at(i))); if(std::is_same::value) { wrapper::vstore(reinterpret_cast(output_it.ptr() + m * sizeof(uint8_t)), wrapper::vqmovn(vreinterpretq_u16_s16(out_val))); } else { wrapper::vstore(reinterpret_cast(output_it.ptr() + m * sizeof(int8_t)), wrapper::vqmovn(out_val)); } } }, input_it, weights_it, biases_it, output_it); } Status validate_arguments(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input); ARM_COMPUTE_RETURN_ERROR_ON(input->data_layout() == DataLayout::UNKNOWN); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON(depth_multiplier == 0); ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(1) + (weights->dimension(1) - 1) * (dilation.x() - 1) > input->dimension(1) + conv_info.pad_left() + conv_info.pad_right()); ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(2) + (weights->dimension(2) - 1) * (dilation.y() - 1) > input->dimension(2) + conv_info.pad_top() + conv_info.pad_bottom()); ARM_COMPUTE_RETURN_ERROR_ON((input->dimension(0) * depth_multiplier) != weights->dimension(0)); ARM_COMPUTE_RETURN_ERROR_ON((dilation.x() < 1) || (dilation.y() < 1)); ARM_COMPUTE_RETURN_ERROR_ON((conv_info.stride().first < 1) || (conv_info.stride().second < 1)); if(is_data_type_quantized_per_channel(weights->data_type())) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QSYMM8_PER_CHANNEL); ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(0) != weights->quantization_info().scale().size()); } else { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights); } if(biases != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1); ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(0)); if(is_data_type_quantized_asymmetric(input->data_type())) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32); } else { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases); } } if(output->total_size() != 0) { const TensorShape output_shape = misc::shape_calculator::compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier, dilation); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), output_shape); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); } return Status{}; } } // namespace NEDepthwiseConvolutionLayerNativeKernel::NEDepthwiseConvolutionLayerNativeKernel() : _func(), _input(), _weights(), _biases(), _output(), _conv_info(), _depth_multiplier(1), _dilation(), _output_multiplier(), _output_shift(), _has_biases() { } void NEDepthwiseConvolutionLayerNativeKernel::configure(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), weights->info(), (biases != nullptr) ? biases->info() : nullptr, output->info(), conv_info, depth_multiplier, dilation)); _input = input; _weights = weights; _biases = biases; _output = output; _conv_info = conv_info; _depth_multiplier = depth_multiplier; _dilation = dilation; _has_biases = (biases != nullptr); if(is_data_type_quantized(_input->info()->data_type())) { const auto input_scale = input->info()->quantization_info().uniform().scale; const auto output_scale = output->info()->quantization_info().uniform().scale; auto weights_scale = weights->info()->quantization_info().scale(); if(!is_data_type_quantized_per_channel(_weights->info()->data_type())) { for(size_t i = 1; i < _weights->info()->dimension(channel_idx); ++i) { weights_scale.push_back(weights_scale.front()); } } for(const auto &s : weights_scale) { int32_t out_mult = 0; int32_t out_shift = 0; const float multiplier = input_scale * s / output_scale; arm_compute::quantization::calculate_quantized_multiplier(multiplier, &out_mult, &out_shift); _output_multiplier.push_back(out_mult); _output_shift.push_back(out_shift); } } switch(_weights->info()->data_type()) { case DataType::QASYMM8: _func = &NEDepthwiseConvolutionLayerNativeKernel::run_depthwise; break; case DataType::QASYMM8_SIGNED: _func = &NEDepthwiseConvolutionLayerNativeKernel::run_depthwise; break; case DataType::QSYMM8_PER_CHANNEL: if(_input->info()->data_type() == DataType::QASYMM8) { _func = &NEDepthwiseConvolutionLayerNativeKernel::run_depthwise; } else { _func = &NEDepthwiseConvolutionLayerNativeKernel::run_depthwise; } break; #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F16: _func = &NEDepthwiseConvolutionLayerNativeKernel::run_depthwise; break; #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F32: _func = &NEDepthwiseConvolutionLayerNativeKernel::run_depthwise; break; default: ARM_COMPUTE_ERROR("Data type not supported"); break; } const TensorShape output_shape = misc::shape_calculator::compute_depthwise_convolution_shape(*input->info(), *weights->info(), conv_info, depth_multiplier, dilation); auto_init_if_empty(*output->info(), input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape).set_quantization_info(output->info()->quantization_info())); Window win = calculate_max_window(*output->info(), Steps()); Coordinates coord; coord.set_num_dimensions(output->info()->num_dimensions()); output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape())); INEKernel::configure(win); } Status NEDepthwiseConvolutionLayerNativeKernel::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, weights, biases, output, conv_info, depth_multiplier, dilation)); return Status{}; } void NEDepthwiseConvolutionLayerNativeKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); (this->*_func)(window, _has_biases); } template > void NEDepthwiseConvolutionLayerNativeKernel::run_depthwise(const Window &window, bool has_biases) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); if(_depth_multiplier == 1) { depthwise_loop_multiplier1_fp(_input, _weights, _biases, _output, _conv_info, _dilation, window, has_biases); } else { depthwise_loop_generic_fp(_input, _weights, _biases, _output, _conv_info, _dilation, _depth_multiplier, window, has_biases); } } template > void NEDepthwiseConvolutionLayerNativeKernel::run_depthwise(const Window &window, bool has_biases) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); if(_depth_multiplier == 1) { depthwise_loop_multiplier1_quantized(_input, _weights, _biases, _output, _conv_info, _dilation, _output_multiplier, _output_shift, window, has_biases); } else { const bool is_pow2 = ((_depth_multiplier & (_depth_multiplier - 1)) == 0); const bool is_quantized_per_tensor = !(is_data_type_quantized_per_channel(_weights->info()->data_type())); if(is_pow2 && is_quantized_per_tensor && _depth_multiplier >= 8) { depthwise_loop_pow2_quantized_per_tensor(_input, _weights, _biases, _output, _conv_info, _dilation, _depth_multiplier, _output_multiplier, _output_shift, window, has_biases); } else { depthwise_loop_generic_quantized(_input, _weights, _biases, _output, _conv_info, _dilation, _depth_multiplier, _output_multiplier, _output_shift, window, has_biases); } } } } // namespace arm_compute