/* * Copyright (c) 2019-2020 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEDepthwiseConvolutionLayerNativeKernel.h" #include "arm_compute/core/AccessWindowStatic.h" #include "arm_compute/core/CPP/Validate.h" #include "arm_compute/core/NEON/wrapper/traits.h" #include "arm_compute/core/NEON/wrapper/wrapper.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/core/utils/quantization/AsymmHelpers.h" #include "src/core/NEON/kernels/convolution/depthwise/impl_qa8_qa8.hpp" #include "support/ToolchainSupport.h" namespace arm_compute { namespace { void pad_vectors(std::vector &mult, std::vector &shift, int vec_size) { ARM_COMPUTE_ERROR_ON(mult.size() != shift.size()); while(mult.size() % vec_size != 0) { mult.push_back(0); shift.push_back(0); } } template void depthwise_loop_multiplier1_fp(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, const Size2D &dilation, const Window &window, bool has_biases) { using VectorType = typename wrapper::traits::neon_vector::type; using TagType = typename wrapper::traits::neon_vector::tag_type; const size_t input_stride_y = input->info()->strides_in_bytes().y(); const size_t input_stride_z = input->info()->strides_in_bytes().z(); const size_t input_max_offset = input->info()->strides_in_bytes().z() * input->info()->dimension(2) - (input->info()->padding().bottom + input->info()->padding().top) * input->info()->strides_in_bytes().y(); const size_t weights_width = weights->info()->dimension(1); const size_t weights_height = weights->info()->dimension(2); const size_t weights_stride_y = weights->info()->strides_in_bytes().y(); const size_t weights_stride_z = weights->info()->strides_in_bytes().z(); const size_t conv_stride_x = conv_info.stride().first; const size_t conv_stride_y = conv_info.stride().second; const size_t conv_pad_left = conv_info.pad_left(); const size_t conv_pad_top = conv_info.pad_top(); Window win_input = window; win_input.set(Window::DimY, Window::Dimension(0, 0, 0)); win_input.set(Window::DimZ, Window::Dimension(0, 0, 0)); Window win_weights = win_input; win_weights.set(3, Window::Dimension(0, 0, 0)); Iterator input_it(input, win_input); Iterator weights_it(weights, win_weights); Iterator output_it(output, window); Iterator biases_it{}; if(has_biases) { biases_it = Iterator(biases, win_weights); } execute_window_loop(window, [&](const Coordinates & id) { VectorType acc = wrapper::vdup_n(static_cast(0), TagType{}); const int input_y = id.y() * conv_stride_x - conv_pad_left; const int input_z = id.z() * conv_stride_y - conv_pad_top; int input_offset = input_y * input_stride_y + input_z * input_stride_z; auto weights_ptr = weights_it.ptr(); for(size_t h = 0; h < weights_height; ++h) { int offs = input_offset; for(size_t w = 0; w < weights_width; ++w) { const auto input_vals = wrapper::vload(reinterpret_cast(input_it.ptr() + std::min(static_cast(offs), input_max_offset))); const auto weights_vals = wrapper::vload(reinterpret_cast(weights_ptr + w * weights_stride_y)); acc = wrapper::vmla(acc, weights_vals, input_vals); offs += dilation.x() * input_stride_y; } weights_ptr += weights_stride_z; input_offset += dilation.y() * input_stride_z; } if(has_biases) { const auto biases_vals = wrapper::vload(reinterpret_cast(biases_it.ptr())); acc = wrapper::vadd(acc, biases_vals); } wrapper::vstore(reinterpret_cast(output_it.ptr()), acc); }, input_it, weights_it, biases_it, output_it); } template void depthwise_loop_generic_fp(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, const Size2D &dilation, unsigned int depth_multiplier, const Window &window, bool has_biases) { const size_t input_stride_y = input->info()->strides_in_bytes().y(); const size_t input_stride_z = input->info()->strides_in_bytes().z(); const size_t input_max_offset = input->info()->strides_in_bytes().z() * input->info()->dimension(2) - (input->info()->padding().bottom + input->info()->padding().top) * input->info()->strides_in_bytes().y(); const size_t weights_width = weights->info()->dimension(1); const size_t weights_height = weights->info()->dimension(2); const size_t weights_stride_y = weights->info()->strides_in_bytes().y(); const size_t weights_stride_z = weights->info()->strides_in_bytes().z(); const size_t conv_stride_x = conv_info.stride().first; const size_t conv_stride_y = conv_info.stride().second; const size_t conv_pad_left = conv_info.pad_left(); const size_t conv_pad_top = conv_info.pad_top(); Window win_input = window; win_input.set(Window::DimY, Window::Dimension(0, 0, 0)); win_input.set(Window::DimZ, Window::Dimension(0, 0, 0)); Window win_weights = win_input; win_weights.set(3, Window::Dimension(0, 0, 0)); win_input.set_dimension_step(Window::DimX, 1); Iterator input_it(input, win_input); Iterator weights_it(weights, win_weights); Iterator output_it(output, window); Iterator biases_it{}; if(has_biases) { biases_it = Iterator(biases, win_weights); } execute_window_loop(window, [&](const Coordinates & id) { std::vector acc(depth_multiplier, static_cast(0)); const int input_y = id.y() * conv_stride_x - conv_pad_left; const int input_z = id.z() * conv_stride_y - conv_pad_top; int input_offset = input_y * input_stride_y + input_z * input_stride_z; auto weights_ptr = weights_it.ptr(); for(size_t h = 0; h < weights_height; ++h) { int offs = input_offset; for(size_t w = 0; w < weights_width; ++w) { const auto input_val = *(reinterpret_cast(input_it.ptr() + std::min(static_cast(offs), input_max_offset))); for(size_t m = 0; m < depth_multiplier; ++m) { const auto weights_val = *(reinterpret_cast(weights_ptr + m * sizeof(T) + w * weights_stride_y)); acc.at(m) = support::cpp11::fma(weights_val, input_val, acc.at(m)); } offs += dilation.x() * input_stride_y; } weights_ptr += weights_stride_z; input_offset += dilation.y() * input_stride_z; } if(has_biases) { for(size_t m = 0; m < depth_multiplier; ++m) { const auto biases_val = *(reinterpret_cast(biases_it.ptr() + m * sizeof(T))); *(reinterpret_cast(output_it.ptr() + m * sizeof(T))) = acc.at(m) + biases_val; } } else { for(size_t m = 0; m < depth_multiplier; ++m) { *(reinterpret_cast(output_it.ptr() + m * sizeof(T))) = acc.at(m); } } }, input_it, weights_it, biases_it, output_it); } template void depthwise_loop_multiplier1_quantized(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, const Size2D &dilation, std::vector output_multiplier, std::vector output_shift, const Window &window, bool has_biases) { using VectorType = typename wrapper::traits::neon_vector::type; using TagType = typename wrapper::traits::neon_vector::tag_type; const size_t input_stride_y = input->info()->strides_in_bytes().y(); const size_t input_stride_z = input->info()->strides_in_bytes().z(); const size_t input_max_offset = input->info()->strides_in_bytes().z() * input->info()->dimension(2) - (input->info()->padding().bottom + input->info()->padding().top) * input->info()->strides_in_bytes().y(); const size_t weights_width = weights->info()->dimension(1); const size_t weights_height = weights->info()->dimension(2); const size_t weights_stride_y = weights->info()->strides_in_bytes().y(); const size_t weights_stride_z = weights->info()->strides_in_bytes().z(); const size_t conv_stride_x = conv_info.stride().first; const size_t conv_stride_y = conv_info.stride().second; const size_t conv_pad_left = conv_info.pad_left(); const size_t conv_pad_top = conv_info.pad_top(); const int32_t input_qoffset = input->info()->quantization_info().uniform().offset; const int32_t weights_qoffset = weights->info()->quantization_info().uniform().offset; const int32_t output_qoffset = output->info()->quantization_info().uniform().offset; const int32_t k_offset = weights_width * weights_height * input_qoffset * weights_qoffset; Window win_input = window; win_input.set(Window::DimY, Window::Dimension(0, 0, 0)); win_input.set(Window::DimZ, Window::Dimension(0, 0, 0)); Window win_weights = win_input; win_weights.set(3, Window::Dimension(0, 0, 0)); Iterator input_it(input, win_input); Iterator weights_it(weights, win_weights); Iterator output_it(output, window); Iterator biases_it{}; if(has_biases) { biases_it = Iterator(biases, win_weights); } execute_window_loop(window, [&](const Coordinates & id) { std::vector acc(S, 0); std::vector in_sum(S, 0); std::vector we_sum(S, 0); const int input_y = id.y() * conv_stride_x - conv_pad_left; const int input_z = id.z() * conv_stride_y - conv_pad_top; int input_offset = input_y * input_stride_y + input_z * input_stride_z; auto weights_ptr = weights_it.ptr(); for(size_t h = 0; h < weights_height; ++h) { int offs = input_offset; for(size_t w = 0; w < weights_width; ++w) { const auto input_vals = wrapper::vload(reinterpret_cast(input_it.ptr() + std::min(static_cast(offs), input_max_offset))); const auto weights_vals = wrapper::vload(reinterpret_cast(weights_ptr + w * weights_stride_y)); for(int i = 0; i < S; ++i) { acc.at(i) += input_vals[i] * weights_vals[i]; in_sum.at(i) += input_vals[i]; we_sum.at(i) += weights_vals[i]; } offs += dilation.x() * input_stride_y; } weights_ptr += weights_stride_z; input_offset += dilation.y() * input_stride_z; } VectorType out_vals = wrapper::vdup_n(static_cast(0), TagType{}); for(int i = 0; i < S; ++i) { acc.at(i) -= in_sum.at(i) * weights_qoffset; acc.at(i) -= we_sum.at(i) * input_qoffset; acc.at(i) += k_offset; if(has_biases) { acc.at(i) += *reinterpret_cast(biases_it.ptr() + i * sizeof(int32_t)); } const int out_mul = output_multiplier.at(id.x() + i); const int out_shift = output_shift.at(id.x() + i); if(out_shift < 0) { acc.at(i) = saturating_doubling_high_mul(acc.at(i) * (1 << (-out_shift)), out_mul) + output_qoffset; } else { acc.at(i) = rounding_divide_by_exp2(saturating_doubling_high_mul(acc.at(i), out_mul), out_shift) + output_qoffset; } out_vals[i] = static_cast(utility::clamp(acc.at(i))); } wrapper::vstore(reinterpret_cast(output_it.ptr()), out_vals); }, input_it, weights_it, biases_it, output_it); } template void depthwise_loop_generic_quantized(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, const Size2D &dilation, unsigned int depth_multiplier, std::vector output_multiplier, std::vector output_shift, const Window &window, bool has_biases) { const size_t input_stride_y = input->info()->strides_in_bytes().y(); const size_t input_stride_z = input->info()->strides_in_bytes().z(); const size_t input_max_offset = input->info()->strides_in_bytes().z() * input->info()->dimension(2) - (input->info()->padding().bottom + input->info()->padding().top) * input->info()->strides_in_bytes().y(); const size_t weights_width = weights->info()->dimension(1); const size_t weights_height = weights->info()->dimension(2); const size_t weights_stride_y = weights->info()->strides_in_bytes().y(); const size_t weights_stride_z = weights->info()->strides_in_bytes().z(); const size_t conv_stride_x = conv_info.stride().first; const size_t conv_stride_y = conv_info.stride().second; const size_t conv_pad_left = conv_info.pad_left(); const size_t conv_pad_top = conv_info.pad_top(); const int32_t input_qoffset = input->info()->quantization_info().uniform().offset; const int32_t weights_qoffset = weights->info()->quantization_info().uniform().offset; const int32_t output_qoffset = output->info()->quantization_info().uniform().offset; const int32_t k_offset = weights_width * weights_height * input_qoffset * weights_qoffset; Window win_input = window; win_input.set(Window::DimY, Window::Dimension(0, 0, 0)); win_input.set(Window::DimZ, Window::Dimension(0, 0, 0)); Window win_weights = win_input; win_weights.set(3, Window::Dimension(0, 0, 0)); win_input.set_dimension_step(Window::DimX, 1); Iterator input_it(input, win_input); Iterator weights_it(weights, win_weights); Iterator output_it(output, window); Iterator biases_it{}; if(has_biases) { biases_it = Iterator(biases, win_weights); } execute_window_loop(window, [&](const Coordinates & id) { std::vector acc(depth_multiplier, 0); std::vector we_sum(depth_multiplier, 0); int32_t in_sum = 0; const int input_y = id.y() * conv_stride_x - conv_pad_left; const int input_z = id.z() * conv_stride_y - conv_pad_top; int input_offset = input_y * input_stride_y + input_z * input_stride_z; auto weights_ptr = weights_it.ptr(); for(size_t h = 0; h < weights_height; ++h) { int offs = input_offset; for(size_t w = 0; w < weights_width; ++w) { const auto input_val = *(reinterpret_cast(input_it.ptr() + std::min(static_cast(offs), input_max_offset))); for(size_t m = 0; m < depth_multiplier; ++m) { const auto weights_val = *(reinterpret_cast(weights_ptr + m * sizeof(T) + w * weights_stride_y)); acc.at(m) += input_val * weights_val; we_sum.at(m) += weights_val; } offs += dilation.x() * input_stride_y; in_sum += input_val; } weights_ptr += weights_stride_z; input_offset += dilation.y() * input_stride_z; } for(size_t m = 0; m < depth_multiplier; ++m) { acc.at(m) -= in_sum * weights_qoffset; acc.at(m) -= we_sum.at(m) * input_qoffset; acc.at(m) += k_offset; if(has_biases) { acc.at(m) += *(reinterpret_cast(biases_it.ptr() + m * sizeof(int32_t))); } const int out_mul = output_multiplier.at(id.x() + m); const int out_shift = output_shift.at(id.x() + m); if(out_shift < 0) { acc.at(m) = saturating_doubling_high_mul(acc.at(m) * (1 << (-out_shift)), out_mul) + output_qoffset; } else { acc.at(m) = rounding_divide_by_exp2(saturating_doubling_high_mul(acc.at(m), out_mul), out_shift) + output_qoffset; } *(reinterpret_cast(output_it.ptr() + m * sizeof(T))) = static_cast(utility::clamp(acc.at(m))); } }, input_it, weights_it, biases_it, output_it); } Status validate_arguments(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input); ARM_COMPUTE_RETURN_ERROR_ON(input->data_layout() == DataLayout::UNKNOWN); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON(depth_multiplier == 0); ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(1) + (weights->dimension(1) - 1) * (dilation.x() - 1) > input->dimension(1) + conv_info.pad_left() + conv_info.pad_right()); ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(2) + (weights->dimension(2) - 1) * (dilation.y() - 1) > input->dimension(2) + conv_info.pad_top() + conv_info.pad_bottom()); ARM_COMPUTE_RETURN_ERROR_ON((input->dimension(0) * depth_multiplier) != weights->dimension(0)); ARM_COMPUTE_RETURN_ERROR_ON((dilation.x() < 1) || (dilation.y() < 1)); ARM_COMPUTE_RETURN_ERROR_ON((conv_info.stride().first < 1) || (conv_info.stride().second < 1)); if(is_data_type_quantized_per_channel(weights->data_type())) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QSYMM8_PER_CHANNEL); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(0) != weights->quantization_info().scale().size()); } else { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights, output); } if(biases != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1); ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(0)); if(is_data_type_quantized_asymmetric(input->data_type())) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32); } else { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases); } } if(output->total_size() != 0) { const TensorShape output_shape = misc::shape_calculator::compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier, dilation); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), output_shape); } return Status{}; } std::pair validate_and_configure_window(ITensorInfo *input, ITensorInfo *weights, ITensorInfo *biases, ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation) { // Get convolved dimensions const TensorShape output_shape = misc::shape_calculator::compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier, dilation); // Output auto inizialitation if not yet initialized auto_init_if_empty(*output, input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape).set_quantization_info(output->quantization_info())); // Configure kernel window (generic) const unsigned int num_elems_read_per_iteration = (depth_multiplier == 1) ? 8 / element_size_from_data_type(input->data_type()) : 1; const unsigned int num_elems_written_per_iteration = num_elems_read_per_iteration * depth_multiplier; // Configure kernel window Window win = calculate_max_window(*output, Steps(num_elems_written_per_iteration)); AccessWindowStatic input_access(input, 0, -conv_info.pad_left(), ceil_to_multiple(num_elems_read_per_iteration, input->dimension(0)), input->dimension(1) + std::max(std::max(conv_info.pad_right(), conv_info.pad_bottom()), conv_info.pad_top())); AccessWindowHorizontal weights_access(weights, 0, num_elems_written_per_iteration); AccessWindowHorizontal output_access(output, 0, num_elems_written_per_iteration); bool window_changed = update_window_and_padding(win, input_access, weights_access, output_access); if(biases != nullptr) { AccessWindowHorizontal biases_access(biases, 0, num_elems_written_per_iteration); window_changed |= update_window_and_padding(win, biases_access); } output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape())); Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, win); } } // namespace NEDepthwiseConvolutionLayerNativeKernel::NEDepthwiseConvolutionLayerNativeKernel() : _func(), _border_size(0), _input(), _weights(), _biases(), _output(), _conv_info(), _depth_multiplier(1), _dilation(), _output_multiplier(), _output_shift(), _has_biases() { } BorderSize NEDepthwiseConvolutionLayerNativeKernel::border_size() const { return _border_size; } void NEDepthwiseConvolutionLayerNativeKernel::configure(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), weights->info(), (biases != nullptr) ? biases->info() : nullptr, output->info(), conv_info, depth_multiplier, dilation)); _input = input; _weights = weights; _biases = biases; _output = output; _conv_info = conv_info; _depth_multiplier = depth_multiplier; _border_size = BorderSize(_conv_info.pad_left(), 0, std::max(std::max(conv_info.pad_right(), conv_info.pad_bottom()), conv_info.pad_top()), 0); _dilation = dilation; _has_biases = (biases != nullptr); if(is_data_type_quantized(_input->info()->data_type())) { const auto input_scale = input->info()->quantization_info().uniform().scale; const auto output_scale = output->info()->quantization_info().uniform().scale; auto weights_scale = weights->info()->quantization_info().scale(); if(!is_data_type_quantized_per_channel(_weights->info()->data_type())) { for(size_t i = 1; i < _weights->info()->dimension(0); ++i) { weights_scale.push_back(weights_scale.front()); } } for(size_t i = 0; i < weights_scale.size(); ++i) { int32_t out_mult = 0; int32_t out_shift = 0; const float multiplier = input_scale * weights_scale.at(i) / output_scale; arm_compute::quantization::calculate_quantized_multiplier(multiplier, &out_mult, &out_shift); _output_multiplier.push_back(out_mult); _output_shift.push_back(out_shift); } } switch(_weights->info()->data_type()) { case DataType::QASYMM8: _func = &NEDepthwiseConvolutionLayerNativeKernel::run_depthwise; pad_vectors(_output_multiplier, _output_shift, 8); break; case DataType::QASYMM8_SIGNED: _func = &NEDepthwiseConvolutionLayerNativeKernel::run_depthwise; pad_vectors(_output_multiplier, _output_shift, 8); break; case DataType::QSYMM8_PER_CHANNEL: if(_input->info()->data_type() == DataType::QASYMM8) { _func = &NEDepthwiseConvolutionLayerNativeKernel::run_depthwise; } else { _func = &NEDepthwiseConvolutionLayerNativeKernel::run_depthwise; } pad_vectors(_output_multiplier, _output_shift, 8); break; #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F16: _func = &NEDepthwiseConvolutionLayerNativeKernel::run_depthwise; pad_vectors(_output_multiplier, _output_shift, 4); break; #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F32: _func = &NEDepthwiseConvolutionLayerNativeKernel::run_depthwise; pad_vectors(_output_multiplier, _output_shift, 2); break; default: ARM_COMPUTE_ERROR("Data type not supported"); break; } auto win_config = validate_and_configure_window(_input->info(), _weights->info(), (biases != nullptr) ? biases->info() : nullptr, _output->info(), _conv_info, _depth_multiplier, dilation); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); INEKernel::configure(win_config.second); } Status NEDepthwiseConvolutionLayerNativeKernel::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, weights, biases, output, conv_info, depth_multiplier, dilation)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), weights->clone().get(), (biases != nullptr) ? biases->clone().get() : nullptr, output->clone().get(), conv_info, depth_multiplier, dilation) .first); return Status{}; } void NEDepthwiseConvolutionLayerNativeKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); (this->*_func)(window, _has_biases); } template < typename T, typename TW, int S, typename std::enable_if < std::is_same::value #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC || std::is_same::value #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC , int >::type > void NEDepthwiseConvolutionLayerNativeKernel::run_depthwise(const Window &window, bool has_biases) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); if(_depth_multiplier == 1) { depthwise_loop_multiplier1_fp(_input, _weights, _biases, _output, _conv_info, _dilation, window, has_biases); } else { depthwise_loop_generic_fp(_input, _weights, _biases, _output, _conv_info, _dilation, _depth_multiplier, window, has_biases); } } template void NEDepthwiseConvolutionLayerNativeKernel::run_depthwise(const Window &window, bool has_biases) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); if(_depth_multiplier == 1) { depthwise_loop_multiplier1_quantized(_input, _weights, _biases, _output, _conv_info, _dilation, _output_multiplier, _output_shift, window, has_biases); } else { depthwise_loop_generic_quantized(_input, _weights, _biases, _output, _conv_info, _dilation, _depth_multiplier, _output_multiplier, _output_shift, window, has_biases); } } } // namespace arm_compute