/* * Copyright (c) 2016-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEChannelCombineKernel.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/IAccessWindow.h" #include "arm_compute/core/IMultiImage.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/MultiImageInfo.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include using namespace arm_compute; namespace arm_compute { class Coordinates; } // namespace arm_compute NEChannelCombineKernel::NEChannelCombineKernel() : _func(nullptr), _planes{ { nullptr } }, _output(nullptr), _output_multi(nullptr), _x_subsampling{ { 1, 1, 1 } }, _y_subsampling{ { 1, 1, 1 } }, _num_elems_processed_per_iteration(8), _is_parallelizable(true) { } void NEChannelCombineKernel::configure(const ITensor *plane0, const ITensor *plane1, const ITensor *plane2, const ITensor *plane3, ITensor *output) { ARM_COMPUTE_ERROR_ON_NULLPTR(plane0, plane1, plane2, output); ARM_COMPUTE_ERROR_ON(plane0 == output); ARM_COMPUTE_ERROR_ON(plane1 == output); ARM_COMPUTE_ERROR_ON(plane2 == output); ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane0, Format::U8); ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane1, Format::U8); ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane2, Format::U8); ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(output, Format::RGB888, Format::RGBA8888, Format::UYVY422, Format::YUYV422); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane0, 1, DataType::U8); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane1, 1, DataType::U8); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane2, 1, DataType::U8); const Format output_format = output->info()->format(); // Check if horizontal dimension of Y plane is even and validate horizontal sub-sampling dimensions for U and V planes if(Format::YUYV422 == output_format || Format::UYVY422 == output_format) { // Validate Y plane of input and output ARM_COMPUTE_ERROR_ON_TENSORS_NOT_EVEN(output_format, plane0, output); // Validate U and V plane of the input ARM_COMPUTE_ERROR_ON_TENSORS_NOT_SUBSAMPLED(output_format, plane0->info()->tensor_shape(), plane1, plane2); } _planes[0] = plane0; _planes[1] = plane1; _planes[2] = plane2; _planes[3] = nullptr; // Validate the last input tensor only for RGBA format if(Format::RGBA8888 == output_format) { ARM_COMPUTE_ERROR_ON_NULLPTR(plane3); ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane3); ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane3, Format::U8); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane3, 1, DataType::U8); _planes[3] = plane3; } _output = output; _output_multi = nullptr; // Half the processed elements for U and V channels due to horizontal sub-sampling of 2 if(Format::YUYV422 == output_format || Format::UYVY422 == output_format) { _x_subsampling[1] = 2; _x_subsampling[2] = 2; } _num_elems_processed_per_iteration = 8; _is_parallelizable = true; // Select function and number of elements to process given the output format switch(output_format) { case Format::RGB888: _func = &NEChannelCombineKernel::combine_3C; break; case Format::RGBA8888: _func = &NEChannelCombineKernel::combine_4C; break; case Format::UYVY422: _num_elems_processed_per_iteration = 16; _func = &NEChannelCombineKernel::combine_YUV_1p; break; case Format::YUYV422: _num_elems_processed_per_iteration = 16; _func = &NEChannelCombineKernel::combine_YUV_1p; break; default: ARM_COMPUTE_ERROR("Not supported format."); break; } Window win = calculate_max_window(*plane0->info(), Steps(_num_elems_processed_per_iteration)); AccessWindowHorizontal output_access(output->info(), 0, _num_elems_processed_per_iteration); AccessWindowHorizontal plane0_access(plane0->info(), 0, _num_elems_processed_per_iteration / _x_subsampling[1], 1.f / _x_subsampling[0]); AccessWindowHorizontal plane1_access(plane1->info(), 0, _num_elems_processed_per_iteration / _x_subsampling[1], 1.f / _x_subsampling[1]); AccessWindowHorizontal plane2_access(plane2->info(), 0, _num_elems_processed_per_iteration / _x_subsampling[1], 1.f / _x_subsampling[2]); AccessWindowHorizontal plane3_access(plane3 == nullptr ? nullptr : plane3->info(), 0, _num_elems_processed_per_iteration); update_window_and_padding( win, plane0_access, plane1_access, plane2_access, plane3_access, output_access); ValidRegion valid_region = intersect_valid_regions(plane0->info()->valid_region(), plane1->info()->valid_region(), plane2->info()->valid_region()); if(plane3 != nullptr) { valid_region = intersect_valid_regions(plane3->info()->valid_region(), valid_region); } output_access.set_valid_region(win, ValidRegion(valid_region.anchor, output->info()->tensor_shape())); INEKernel::configure(win); } void NEChannelCombineKernel::configure(const IImage *plane0, const IImage *plane1, const IImage *plane2, IMultiImage *output) { ARM_COMPUTE_ERROR_ON_NULLPTR(plane0, plane1, plane2, output); ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane0); ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane1); ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane2); ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane0, Format::U8); ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane1, Format::U8); ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane2, Format::U8); ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(output, Format::NV12, Format::NV21, Format::IYUV, Format::YUV444); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane0, 1, DataType::U8); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane1, 1, DataType::U8); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane2, 1, DataType::U8); const Format output_format = output->info()->format(); // Validate shape of Y plane to be even and shape of sub-sampling dimensions for U and V planes // Perform validation only for formats which require sub-sampling. if(Format::YUV444 != output_format) { // Validate Y plane of input and output ARM_COMPUTE_ERROR_ON_TENSORS_NOT_EVEN(output_format, plane0, output->plane(0)); // Validate U and V plane of the input ARM_COMPUTE_ERROR_ON_TENSORS_NOT_SUBSAMPLED(output_format, plane0->info()->tensor_shape(), plane1, plane2); // Validate second plane U (NV12 and NV21 have a UV88 combined plane while IYUV has only the U plane) // MultiImage generates the correct tensor shape but also check in case the tensor shape of planes was changed to a wrong size ARM_COMPUTE_ERROR_ON_TENSORS_NOT_SUBSAMPLED(output_format, plane0->info()->tensor_shape(), output->plane(1)); // Validate the last plane V of format IYUV if(Format::IYUV == output_format) { // Validate Y plane of the output ARM_COMPUTE_ERROR_ON_TENSORS_NOT_SUBSAMPLED(output_format, plane0->info()->tensor_shape(), output->plane(2)); } } _planes[0] = plane0; _planes[1] = plane1; _planes[2] = plane2; _planes[3] = nullptr; _output = nullptr; _output_multi = output; bool has_two_planes = false; unsigned int num_elems_written_plane1 = 8; _num_elems_processed_per_iteration = 8; _is_parallelizable = true; switch(output_format) { case Format::NV12: case Format::NV21: _x_subsampling = { { 1, 2, 2 } }; _y_subsampling = { { 1, 2, 2 } }; _func = &NEChannelCombineKernel::combine_YUV_2p; has_two_planes = true; num_elems_written_plane1 = 16; break; case Format::IYUV: _is_parallelizable = false; _x_subsampling = { { 1, 2, 2 } }; _y_subsampling = { { 1, 2, 2 } }; _func = &NEChannelCombineKernel::combine_YUV_3p; break; case Format::YUV444: _is_parallelizable = false; _x_subsampling = { { 1, 1, 1 } }; _y_subsampling = { { 1, 1, 1 } }; _func = &NEChannelCombineKernel::combine_YUV_3p; break; default: ARM_COMPUTE_ERROR("Not supported format."); break; } const unsigned int y_step = *std::max_element(_y_subsampling.begin(), _y_subsampling.end()); Window win = calculate_max_window(*plane0->info(), Steps(_num_elems_processed_per_iteration, y_step)); AccessWindowRectangle output_plane0_access(output->plane(0)->info(), 0, 0, _num_elems_processed_per_iteration, 1, 1.f, 1.f / _y_subsampling[0]); AccessWindowRectangle output_plane1_access(output->plane(1)->info(), 0, 0, num_elems_written_plane1, 1, 1.f / _x_subsampling[1], 1.f / _y_subsampling[1]); AccessWindowRectangle output_plane2_access(has_two_planes ? nullptr : output->plane(2)->info(), 0, 0, _num_elems_processed_per_iteration, 1, 1.f / _x_subsampling[2], 1.f / _y_subsampling[2]); update_window_and_padding(win, AccessWindowHorizontal(plane0->info(), 0, _num_elems_processed_per_iteration), AccessWindowRectangle(plane1->info(), 0, 0, _num_elems_processed_per_iteration, 1, 1.f / _x_subsampling[1], 1.f / _y_subsampling[1]), AccessWindowRectangle(plane2->info(), 0, 0, _num_elems_processed_per_iteration, 1, 1.f / _x_subsampling[2], 1.f / _y_subsampling[2]), output_plane0_access, output_plane1_access, output_plane2_access); ValidRegion plane0_valid_region = plane0->info()->valid_region(); ValidRegion output_plane1_region = has_two_planes ? intersect_valid_regions(plane1->info()->valid_region(), plane2->info()->valid_region()) : plane2->info()->valid_region(); output_plane0_access.set_valid_region(win, ValidRegion(plane0_valid_region.anchor, output->plane(0)->info()->tensor_shape())); output_plane1_access.set_valid_region(win, ValidRegion(output_plane1_region.anchor, output->plane(1)->info()->tensor_shape())); output_plane2_access.set_valid_region(win, ValidRegion(plane2->info()->valid_region().anchor, output->plane(2)->info()->tensor_shape())); INEKernel::configure(win); } bool NEChannelCombineKernel::is_parallelisable() const { return _is_parallelizable; } void NEChannelCombineKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); ARM_COMPUTE_ERROR_ON(_func == nullptr); (this->*_func)(window); } void NEChannelCombineKernel::combine_3C(const Window &win) { Iterator p0(_planes[0], win); Iterator p1(_planes[1], win); Iterator p2(_planes[2], win); Iterator out(_output, win); execute_window_loop(win, [&](const Coordinates &) { const auto p0_ptr = static_cast(p0.ptr()); const auto p1_ptr = static_cast(p1.ptr()); const auto p2_ptr = static_cast(p2.ptr()); const auto out_ptr = static_cast(out.ptr()); const uint8x8x3_t pixels = { { vld1_u8(p0_ptr), vld1_u8(p1_ptr), vld1_u8(p2_ptr) } }; vst3_u8(out_ptr, pixels); }, p0, p1, p2, out); } void NEChannelCombineKernel::combine_4C(const Window &win) { Iterator p0(_planes[0], win); Iterator p1(_planes[1], win); Iterator p2(_planes[2], win); Iterator p3(_planes[3], win); Iterator out(_output, win); execute_window_loop(win, [&](const Coordinates &) { const auto p0_ptr = static_cast(p0.ptr()); const auto p1_ptr = static_cast(p1.ptr()); const auto p2_ptr = static_cast(p2.ptr()); const auto p3_ptr = static_cast(p3.ptr()); const auto out_ptr = static_cast(out.ptr()); const uint8x8x4_t pixels = { { vld1_u8(p0_ptr), vld1_u8(p1_ptr), vld1_u8(p2_ptr), vld1_u8(p3_ptr) } }; vst4_u8(out_ptr, pixels); }, p0, p1, p2, p3, out); } template void NEChannelCombineKernel::combine_YUV_1p(const Window &win) { // Create sub-sampled uv window and init uv planes Window win_uv(win); win_uv.set_dimension_step(Window::DimX, win.x().step() / _x_subsampling[1]); win_uv.validate(); Iterator p0(_planes[0], win); Iterator p1(_planes[1], win_uv); Iterator p2(_planes[2], win_uv); Iterator out(_output, win); constexpr auto shift = is_uyvy ? 1 : 0; execute_window_loop(win, [&](const Coordinates &) { const auto p0_ptr = static_cast(p0.ptr()); const auto p1_ptr = static_cast(p1.ptr()); const auto p2_ptr = static_cast(p2.ptr()); const auto out_ptr = static_cast(out.ptr()); const uint8x8x2_t pixels_y = vld2_u8(p0_ptr); const uint8x8x2_t pixels_uv = { { vld1_u8(p1_ptr), vld1_u8(p2_ptr) } }; uint8x8x4_t pixels{ {} }; pixels.val[0 + shift] = pixels_y.val[0]; pixels.val[1 - shift] = pixels_uv.val[0]; pixels.val[2 + shift] = pixels_y.val[1]; pixels.val[3 - shift] = pixels_uv.val[1]; vst4_u8(out_ptr, pixels); }, p0, p1, p2, out); } void NEChannelCombineKernel::combine_YUV_2p(const Window &win) { ARM_COMPUTE_ERROR_ON(win.x().start() % _x_subsampling[1]); ARM_COMPUTE_ERROR_ON(win.y().start() % _y_subsampling[1]); // Copy first plane copy_plane(win, 0); // Update UV window Window uv_win(win); uv_win.set(Window::DimX, Window::Dimension(uv_win.x().start() / _x_subsampling[1], uv_win.x().end() / _x_subsampling[1], uv_win.x().step() / _x_subsampling[1])); uv_win.set(Window::DimY, Window::Dimension(uv_win.y().start() / _y_subsampling[1], uv_win.y().end() / _y_subsampling[1], 1)); uv_win.validate(); // Update output win Window out_win(win); out_win.set(Window::DimX, Window::Dimension(out_win.x().start(), out_win.x().end(), out_win.x().step() / _x_subsampling[1])); out_win.set(Window::DimY, Window::Dimension(out_win.y().start() / _y_subsampling[1], out_win.y().end() / _y_subsampling[1], 1)); out_win.validate(); // Construct second plane const int shift = (Format::NV12 == _output_multi->info()->format()) ? 0 : 1; Iterator p1(_planes[1 + shift], uv_win); Iterator p2(_planes[2 - shift], uv_win); Iterator out(_output_multi->plane(1), out_win); // Increase step size after iterator is created to calculate stride correctly for multi channel format out_win.set_dimension_step(Window::DimX, out_win.x().step() * _x_subsampling[1]); execute_window_loop(out_win, [&](const Coordinates &) { const uint8x8x2_t pixels = { { vld1_u8(p1.ptr()), vld1_u8(p2.ptr()) } }; vst2_u8(out.ptr(), pixels); }, p1, p2, out); } void NEChannelCombineKernel::combine_YUV_3p(const Window &win) { copy_plane(win, 0); copy_plane(win, 1); copy_plane(win, 2); } void NEChannelCombineKernel::copy_plane(const Window &win, uint32_t plane_id) { ARM_COMPUTE_ERROR_ON(win.x().start() % _x_subsampling[plane_id]); ARM_COMPUTE_ERROR_ON(win.y().start() % _y_subsampling[plane_id]); // Update window Window tmp_win(win); tmp_win.set(Window::DimX, Window::Dimension(tmp_win.x().start() / _x_subsampling[plane_id], tmp_win.x().end() / _x_subsampling[plane_id], tmp_win.x().step() / _x_subsampling[plane_id])); tmp_win.set(Window::DimY, Window::Dimension(tmp_win.y().start() / _y_subsampling[plane_id], tmp_win.y().end() / _y_subsampling[plane_id], 1)); Iterator in(_planes[plane_id], tmp_win); Iterator out(_output_multi->plane(plane_id), tmp_win); execute_window_loop(tmp_win, [&](const Coordinates &) { const uint8x8_t pixels = vld1_u8(in.ptr()); vst1_u8(out.ptr(), pixels); }, in, out); }