/* * Copyright (c) 2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEBatchToSpaceLayerKernel.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/NEON/wrapper/wrapper.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include #include using namespace arm_compute::misc::shape_calculator; namespace arm_compute { namespace { Status validate_arguments(const ITensorInfo *input, const ITensorInfo *block_info, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, block_info, output); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(block_info, 1, DataType::S32); ARM_COMPUTE_RETURN_ERROR_ON(input->num_dimensions() > 4); // Validate output if initialized if(output->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON(output->num_dimensions() > 4); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); } return Status{}; } Status validate_arguments_static(const ITensorInfo *input, const int block_shape_x, const int block_shape_y, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_RETURN_ERROR_ON(input->num_dimensions() > 4); ARM_COMPUTE_RETURN_ERROR_ON(block_shape_x <= 0); ARM_COMPUTE_RETURN_ERROR_ON(block_shape_y <= 0); const DataLayout data_layout = input->data_layout(); const int idx_batch = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES); ARM_COMPUTE_RETURN_ERROR_ON(input->tensor_shape()[idx_batch] % (block_shape_x * block_shape_y) != 0); // Validate output if initialized if(output->total_size() != 0) { const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); const int idx_channel = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL); ARM_COMPUTE_RETURN_ERROR_ON(output->tensor_shape()[idx_width] != (block_shape_x * input->tensor_shape()[idx_width])); ARM_COMPUTE_RETURN_ERROR_ON(output->tensor_shape()[idx_height] != (block_shape_y * input->tensor_shape()[idx_height])); ARM_COMPUTE_RETURN_ERROR_ON(output->tensor_shape()[idx_channel] != input->tensor_shape()[idx_channel]); ARM_COMPUTE_RETURN_ERROR_ON(output->num_dimensions() > 4); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); } return Status{}; } } // namespace NEBatchToSpaceLayerKernel::NEBatchToSpaceLayerKernel() : _input(nullptr), _block_shape(nullptr), _output(nullptr), _block_shape_x(), _block_shape_y() { } void NEBatchToSpaceLayerKernel::configure(const ITensor *input, const ITensor *block_shape, ITensor *output) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), block_shape->info(), output->info())); _input = input; _block_shape = block_shape; _output = output; // Configure kernel window Window win = calculate_max_window(*input->info(), Steps()); ICPPKernel::configure(win); } void NEBatchToSpaceLayerKernel::configure(const ITensor *input, const int32_t block_shape_x, const int32_t block_shape_y, ITensor *output) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); TensorShape output_shape = compute_batch_to_space_shape(input->info(), block_shape_x, block_shape_y); // Output auto inizialitation if not yet initialized auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape)); // Perform validation step ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_static(input->info(), block_shape_x, block_shape_y, output->info())); _input = input; _output = output; _block_shape_x = block_shape_x; _block_shape_y = block_shape_y; // Configure kernel window Window win = calculate_max_window(*input->info(), Steps()); ICPPKernel::configure(win); } Status NEBatchToSpaceLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *block_shape, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, block_shape, output); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, block_shape, output)); return Status{}; } Status NEBatchToSpaceLayerKernel::validate(const ITensorInfo *input, const int32_t block_shape_x, const int32_t block_shape_y, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_static(input, block_shape_x, block_shape_y, output)); return Status{}; } void NEBatchToSpaceLayerKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICPPKernel::window(), window); if(_block_shape != nullptr) { // Retrieve the block shapes dynamically _block_shape_x = *(reinterpret_cast(_block_shape->ptr_to_element(0))); _block_shape_y = *(reinterpret_cast(_block_shape->ptr_to_element(1))); } const int batch_size = _input->info()->dimension(3); const int r = (batch_size / (_block_shape_x * _block_shape_y)); const int element_size = _input->info()->element_size(); Window slice_in = window.first_slice_window_3D(); Window slice_out = window.first_slice_window_4D(); // The slice_out slice does not move slice_out.set(Window::DimX, Window::Dimension(0, 0, 0)); slice_out.set(Window::DimY, Window::Dimension(0, 0, 0)); slice_out.set(Window::DimZ, Window::Dimension(0, 0, 0)); slice_out.set(3, Window::Dimension(0, 0, 0)); int batch_id = 0; // Main loop for NCHW and NHWC if(_input->info()->data_layout() == DataLayout::NCHW) { do { Iterator in(_input, slice_in); execute_window_loop(slice_in, [&](const Coordinates & id) { const int x = id.x(); const int y = id.y(); const int z = id.z(); const int w = batch_id % r; const int out_x = x * _block_shape_x + (batch_id / r) % _block_shape_x; const int out_y = y * _block_shape_y + (batch_id / r) / _block_shape_x; Coordinates output_coords{ out_x, out_y, z, w }; memcpy(_output->ptr_to_element(output_coords), in.ptr(), element_size); }, in); ++batch_id; } while(window.slide_window_slice_3D(slice_in)); } else { do { Iterator in(_input, slice_in); execute_window_loop(slice_in, [&](const Coordinates & id) { const int z = id.x(); const int x = id.y(); const int y = id.z(); const int w = batch_id % r; const int out_x = x * _block_shape_x + (batch_id / r) % _block_shape_x; const int out_y = y * _block_shape_y + (batch_id / r) / _block_shape_x; Coordinates output_coords{ z, out_x, out_y, w }; memcpy(_output->ptr_to_element(output_coords), in.ptr(), element_size); }, in); ++batch_id; } while(window.slide_window_slice_3D(slice_in)); } } } // namespace arm_compute