/* * Copyright (c) 2019-2020, 2023 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/core/NEON/kernels/NEBatchToSpaceLayerKernel.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "arm_compute/core/Validate.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/WindowHelpers.h" using namespace arm_compute::misc::shape_calculator; namespace arm_compute { namespace { Status validate_arguments(const ITensorInfo *input, const ITensorInfo *block_info, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, block_info, output); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(block_info, 1, DataType::S32); ARM_COMPUTE_RETURN_ERROR_ON(input->num_dimensions() > 4); ARM_COMPUTE_RETURN_ERROR_ON(input->data_type() == DataType::UNKNOWN); // Validate output if initialized if (output->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON(output->num_dimensions() > 4); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); } return Status{}; } Status validate_arguments_static(const ITensorInfo *input, int block_shape_x, int block_shape_y, const ITensorInfo *output, const CropInfo &crop_info) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_RETURN_ERROR_ON(input->num_dimensions() > 4); ARM_COMPUTE_RETURN_ERROR_ON(block_shape_x <= 0); ARM_COMPUTE_RETURN_ERROR_ON(block_shape_y <= 0); const DataLayout data_layout = input->data_layout(); const int idx_batch = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES); ARM_COMPUTE_RETURN_ERROR_ON(input->tensor_shape()[idx_batch] % (block_shape_x * block_shape_y) != 0); // Validate output if initialized if (output->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON(output->num_dimensions() > 4); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); const TensorShape expected_output_shape = compute_batch_to_space_shape( input->data_layout(), input->tensor_shape(), block_shape_x, block_shape_y, crop_info); const TensorInfo expected_output = output->clone()->set_tensor_shape(expected_output_shape); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output, &expected_output); } return Status{}; } } // namespace NEBatchToSpaceLayerKernel::NEBatchToSpaceLayerKernel() : _input(nullptr), _block_shape(nullptr), _output(nullptr), _data_layout(DataLayout::UNKNOWN), _block_shape_x(), _block_shape_y(), _crop_info() { } void NEBatchToSpaceLayerKernel::configure(const ITensor *input, const ITensor *block_shape, ITensor *output) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), block_shape->info(), output->info())); _input = input; _block_shape = block_shape; _output = output; _data_layout = input->info()->data_layout(); // Configure kernel window Window win = calculate_max_window(*output->info(), Steps()); ICPPKernel::configure(win); } void NEBatchToSpaceLayerKernel::configure( const ITensor *input, int32_t block_shape_x, int32_t block_shape_y, ITensor *output, const CropInfo &crop_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); const TensorShape output_shape = compute_batch_to_space_shape( input->info()->data_layout(), input->info()->tensor_shape(), block_shape_x, block_shape_y); // Output auto initialization if not yet initialized auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape)); // Perform validation step ARM_COMPUTE_ERROR_THROW_ON( validate_arguments_static(input->info(), block_shape_x, block_shape_y, output->info(), crop_info)); _input = input; _output = output; _block_shape_x = block_shape_x; _block_shape_y = block_shape_y; _data_layout = input->info()->data_layout(); _crop_info = crop_info; // Configure kernel window Window win = calculate_max_window(*output->info(), Steps()); ICPPKernel::configure(win); } Status NEBatchToSpaceLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *block_shape, const ITensorInfo *output) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, block_shape, output); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, block_shape, output)); return Status{}; } Status NEBatchToSpaceLayerKernel::validate(const ITensorInfo *input, int32_t block_shape_x, int32_t block_shape_y, const ITensorInfo *output, const CropInfo &crop_info) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_static(input, block_shape_x, block_shape_y, output, crop_info)); return Status{}; } void NEBatchToSpaceLayerKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICPPKernel::window(), window); if (_block_shape != nullptr) { // Retrieve the block shapes dynamically _block_shape_x = *(reinterpret_cast(_block_shape->ptr_to_element(0))); _block_shape_y = *(reinterpret_cast(_block_shape->ptr_to_element(1))); } const int batch_size = _output->info()->dimension(3); const int element_size = _output->info()->element_size(); Window slice_out = window.first_slice_window_3D(); int batch_id = 0; // Main loop for NCHW and NHWC if (_data_layout == DataLayout::NCHW) { do { Iterator out(_output, slice_out); execute_window_loop( slice_out, [&](const Coordinates &id) { const int x = id.x(); const int y = id.y(); const int z = id.z(); // Translate x, y to uncropped version const int x_c = x + _crop_info.left; const int y_c = y + _crop_info.top; const int in_batch = batch_id + ((x_c % _block_shape_x) + (y_c % _block_shape_y) * _block_shape_x) * batch_size; const int in_x = x_c / _block_shape_x; const int in_y = y_c / _block_shape_y; Coordinates input_coords{in_x, in_y, z, in_batch}; memcpy(out.ptr(), _input->ptr_to_element(input_coords), element_size); }, out); ++batch_id; } while (window.slide_window_slice_3D(slice_out)); } else { // For NHWC we can perform a block copy on the Channel (first) dimension. Thus we do not need to iterate over this dimension slice_out.set(0U, Window::Dimension(0U, 1U, 1U)); do { Iterator out(_output, slice_out); execute_window_loop( slice_out, [&](const Coordinates &id) { const int x = id.y(); const int y = id.z(); // Translate x, y to uncropped version const int x_c = x + _crop_info.left; const int y_c = y + _crop_info.top; const int in_batch = batch_id + ((x_c % _block_shape_x) + (y_c % _block_shape_y) * _block_shape_x) * batch_size; const int in_x = x_c / _block_shape_x; const int in_y = y_c / _block_shape_y; Coordinates input_coords{0, in_x, in_y, in_batch}; memcpy(out.ptr(), _input->ptr_to_element(input_coords), element_size * _input->info()->dimension(0)); }, out); ++batch_id; } while (window.slide_window_slice_3D(slice_out)); } } } // namespace arm_compute