/* * Copyright (c) 2017-2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/core/NEON/kernels/NEBatchNormalizationLayerKernel.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include "src/core/CPP/Validate.h" #include "src/core/NEON/NEFixedPoint.h" #include "src/core/NEON/NEMath.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/WindowHelpers.h" #include "src/core/NEON/kernels/detail/NEActivationFunctionDetail.h" #include "src/core/NEON/wrapper/wrapper.h" #include "src/core/NEON/kernels/batchnormalization/impl/list.h" #include "src/core/common/Registrars.h" #include namespace arm_compute { namespace { struct BatchNormalizationSelectorData { DataType dt; }; using BatchNormalizationSelectorPtr = std::add_pointer::type; using BatchNormalizationKernelPtr = std::add_pointer::type; struct BatchNormalizationKernel { const char *name; const BatchNormalizationSelectorPtr is_selected; BatchNormalizationKernelPtr ukernel; }; static const BatchNormalizationKernel available_kernels[] = { #if defined(ENABLE_SVE) { "fp16_sve_batch_normalization", [](const BatchNormalizationSelectorData & data) { return data.dt == DataType::F16; }, REGISTER_FP16_SVE(arm_compute::cpu::fp16_sve_batch_normalization) }, { "f32_sve_batch_normalization", [](const BatchNormalizationSelectorData & data) { return data.dt == DataType::F32; }, REGISTER_FP32_SVE(arm_compute::cpu::fp32_sve_batch_normalization) }, #endif /* !defined(ENABLE_SVE) */ #if defined(ENABLE_NEON) #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) { "fp16_neon_batch_normalization", [](const BatchNormalizationSelectorData & data) { return data.dt == DataType::F16; }, REGISTER_FP16_NEON(arm_compute::cpu::fp16_neon_batch_normalization) }, #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ { "f32_neon_batch_normalization", [](const BatchNormalizationSelectorData & data) { return data.dt == DataType::F32; }, REGISTER_FP32_NEON(arm_compute::cpu::fp32_neon_batch_normalization) }, #endif /* !defined(ENABLE_NEON) */ }; const BatchNormalizationKernel *get_implementation(const BatchNormalizationSelectorData &data) { for(const auto &uk : available_kernels) { if(uk.is_selected(data)) { return &uk; } } return nullptr; } Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const ITensorInfo *mean, const ITensorInfo *var, const ITensorInfo *beta, const ITensorInfo *gamma, float epsilon, ActivationLayerInfo act_info) { ARM_COMPUTE_UNUSED(epsilon); const auto *uk = get_implementation(BatchNormalizationSelectorData{ input->data_type() }); ARM_COMPUTE_RETURN_ERROR_ON(uk == nullptr || uk->ukernel == nullptr); if(act_info.enabled()) { ActivationLayerInfo::ActivationFunction act = act_info.activation(); ARM_COMPUTE_RETURN_ERROR_ON(act != ActivationLayerInfo::ActivationLayerInfo::ActivationFunction::RELU && act != ActivationLayerInfo::ActivationLayerInfo::ActivationFunction::BOUNDED_RELU && act != ActivationLayerInfo::ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU); ARM_COMPUTE_RETURN_ERROR_ON(act_info.b() > act_info.a()); } if(nullptr != output) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); } ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, mean, var); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(mean, var); if(beta != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, beta); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(mean, beta); } if(gamma != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, gamma); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(mean, gamma); } ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL)) != mean->dimension(0)); return Status{}; } } //namespace template void NEBatchNormalizationLayerKernel::batch_normalization_nchw(const Window &window) { /** SIMD vector tag type. */ using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t; const int window_step_x = 16 / sizeof(T); const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); Window win_to_use = window; win_to_use.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input(_input, win_to_use); Iterator output(_output, win_to_use); F activation_functor(_act_info); // Hold information about the current feature map we are iterating. // Only compute denominator and constants once per feature map. int slice = -1; const auto input_mean = reinterpret_cast(_mean->ptr_to_element(Coordinates(0, 0))); const auto input_var = reinterpret_cast(_var->ptr_to_element(Coordinates(0, 0))); const auto input_gamma = (_gamma != nullptr) ? reinterpret_cast(_gamma->ptr_to_element(Coordinates(0, 0))) : nullptr; const auto input_beta = (_beta != nullptr) ? reinterpret_cast(_beta->ptr_to_element(Coordinates(0, 0))) : nullptr; T mean = static_cast(0); T var = static_cast(0); T gamma = static_cast(1); T beta = static_cast(0); T denominator = static_cast(0); auto mean_vec = wrapper::vdup_n(mean, ExactTagType{}); auto var_vec = wrapper::vdup_n(var, ExactTagType{}); auto gamma_vec = wrapper::vdup_n(gamma, ExactTagType{}); auto beta_vec = wrapper::vdup_n(beta, ExactTagType{}); auto denominator_vec = wrapper::vdup_n(denominator, ExactTagType{}); const auto epsilon_vec = wrapper::vdup_n(static_cast(_epsilon), ExactTagType{}); execute_window_loop(win_to_use, [&](const Coordinates & id) { const auto input_ptr = reinterpret_cast(input.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); if(slice != id.z()) { mean = input_mean[id.z()]; var = input_var[id.z()]; mean_vec = wrapper::vdup_n(mean, ExactTagType{}); var_vec = wrapper::vdup_n(var, ExactTagType{}); if(input_gamma != nullptr) { gamma = input_gamma[id.z()]; gamma_vec = wrapper::vdup_n(gamma, ExactTagType{}); } if(input_beta != nullptr) { beta = input_beta[id.z()]; beta_vec = wrapper::vdup_n(beta, ExactTagType{}); } // Calculate denominator denominator_vec = wrapper::vinvsqrt(wrapper::vadd(var_vec, epsilon_vec)); denominator = wrapper::vgetlane(denominator_vec, 0); slice = id.z(); } // Perform core calculations using vector operations int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { // Calculate x bar const auto numerator = wrapper::vsub(wrapper::vloadq(input_ptr + x), mean_vec); const auto x_bar = wrapper::vmul(numerator, denominator_vec); auto res = wrapper::vmla(beta_vec, x_bar, gamma_vec); // Perform fused activation if(fused_activation) { activation_functor(res); } // Store results wrapper::vstore(output_ptr + x, res); } // Compute left-over elements for(; x < window_end_x; ++x) { const T numerator = input_ptr[x] - mean; const T x_bar = numerator * denominator; T res = beta + x_bar * gamma; // Perform fused activation if(fused_activation) { activation_functor(res); } // Store results *(output_ptr + x) = res; } }, input, output); } void NEBatchNormalizationLayerKernel::configure_non_fused() { switch(_input->info()->data_type()) { #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F16: _func = &NEBatchNormalizationLayerKernel::batch_normalization_nchw>; break; #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F32: _func = &NEBatchNormalizationLayerKernel::batch_normalization_nchw>; break; default: ARM_COMPUTE_ERROR("Element size not supported"); break; } } void NEBatchNormalizationLayerKernel::configure_fused() { // NCHW Fused Batched Normalization with activation functions : FP32 static std::map bn_fused_map_f32_nchw = { { ActivationLayerInfo::ActivationFunction::RELU, &NEBatchNormalizationLayerKernel::batch_normalization_nchw> }, { ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_nchw> }, { ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_nchw> } }; #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC // NCHW Fused Batched Normalization with activation functions : FP16 static std::map bn_fused_map_f16_nchw = { { ActivationLayerInfo::ActivationFunction::RELU, &NEBatchNormalizationLayerKernel::batch_normalization_nchw> }, { ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_nchw> }, { ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_nchw> } }; #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC switch(_input->info()->data_type()) { #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F16: _func = bn_fused_map_f16_nchw[_act_info.activation()]; break; #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F32: _func = bn_fused_map_f32_nchw[_act_info.activation()]; break; default: ARM_COMPUTE_ERROR("Element size not supported"); break; } } NEBatchNormalizationLayerKernel::NEBatchNormalizationLayerKernel() : _func(nullptr), _input(nullptr), _output(nullptr), _mean(nullptr), _var(nullptr), _gamma(nullptr), _beta(nullptr), _epsilon(), _act_info() { } void NEBatchNormalizationLayerKernel::configure(ITensor *input, ITensor *output, const ITensor *mean, const ITensor *var, const ITensor *beta, const ITensor *gamma, float epsilon, ActivationLayerInfo act_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, mean, var); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), (output != nullptr) ? output->info() : nullptr, mean->info(), var->info(), (beta != nullptr) ? beta->info() : nullptr, (gamma != nullptr) ? gamma->info() : nullptr, epsilon, act_info)); _input = input; _output = input; _mean = mean; _var = var; _gamma = gamma; _beta = beta; _epsilon = epsilon; _act_info = act_info; const bool run_in_place = (output == nullptr) || (output == input); if(!run_in_place) { _output = output; } // Configure activation function to run const bool is_nchw = _input->info()->data_layout() == DataLayout::NCHW; if(is_nchw) { if(_act_info.enabled()) { configure_fused(); } else { configure_non_fused(); } } // Configure kernel window Window win = calculate_max_window(*input->info(), Steps()); INEKernel::configure(win); if(output != nullptr) { // Output auto initialization if not yet initialized auto_init_if_empty(*output->info(), *input->info()->clone()); } } Status NEBatchNormalizationLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const ITensorInfo *mean, const ITensorInfo *var, const ITensorInfo *beta, const ITensorInfo *gamma, float epsilon, ActivationLayerInfo act_info) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, mean, var, beta, gamma, epsilon, act_info)); return Status{}; } void NEBatchNormalizationLayerKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); ARM_COMPUTE_ERROR_ON(_func == nullptr && _input->info()->data_layout() == DataLayout::NCHW); const bool is_nchw = _input->info()->data_layout() == DataLayout::NCHW; if(is_nchw) { (this->*_func)(window); } else { const auto *uk = get_implementation(BatchNormalizationSelectorData{ _input->info()->data_type() }); uk->ukernel(_input, _output, _mean, _var, _beta, _gamma, _epsilon, _act_info, window); } } } // namespace arm_compute