/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEBatchNormalizationLayerKernel.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/NEON/NEFixedPoint.h" #include "arm_compute/core/NEON/NEMath.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" using namespace arm_compute; NEBatchNormalizationLayerKernel::NEBatchNormalizationLayerKernel() : _func(nullptr), _input(nullptr), _output(nullptr), _mean(nullptr), _var(nullptr), _gamma(nullptr), _beta(nullptr), _epsilon() { } void batch_normalization_q8(ITensor *in, ITensor *out, const ITensor *mean, const ITensor *var, const ITensor *beta, const ITensor *gamma, float epsilon, const Window &window) { Iterator input(in, window); Iterator output(out, window); // Hold information about the current feature map we are iterating. // Only compute denominator and NEON vectors once per feature map. int slice = -1; const int fixed_point_position = in->info()->fixed_point_position(); const auto input_mean = reinterpret_cast(mean->ptr_to_element(Coordinates(0, 0))); const auto input_var = reinterpret_cast(var->ptr_to_element(Coordinates(0, 0))); const auto input_gamma = reinterpret_cast(gamma->ptr_to_element(Coordinates(0, 0))); const auto input_beta = reinterpret_cast(beta->ptr_to_element(Coordinates(0, 0))); qint8x16_t mean_vec = vdupq_n_qs8(0); qint8x16_t var_vec = vdupq_n_qs8(0); qint8x16_t gamma_vec = vdupq_n_qs8(0); qint8x16_t beta_vec = vdupq_n_qs8(0); qint8x16_t denominator = vdupq_n_qs8(0); const qint8x16_t epsilon_vec = vdupq_n_qs8(sqcvt_qs8_f32(epsilon, fixed_point_position)); execute_window_loop(window, [&](const Coordinates & id) { if(slice != id.z()) { // Conctruct vectors mean_vec = vdupq_n_qs8(*(input_mean + id.z())); var_vec = vdupq_n_qs8(*(input_var + id.z())); gamma_vec = vdupq_n_qs8(*(input_gamma + id.z())); beta_vec = vdupq_n_qs8(*(input_beta + id.z())); // Calculate denominator denominator = vqinvsqrtq_qs8(vqaddq_qs8(var_vec, epsilon_vec), fixed_point_position); slice = id.z(); } // Calculate x bar and store results const qint8x16_t numerator = vqsubq_qs8(vld1q_qs8(reinterpret_cast(input.ptr())), mean_vec); const qint8x16_t x_bar = vqmulq_qs8(numerator, denominator, fixed_point_position); vst1q_qs8(reinterpret_cast(output.ptr()), vqmlaq_qs8(beta_vec, x_bar, gamma_vec, fixed_point_position)); }, input, output); } void batch_normalization_q16(ITensor *in, ITensor *out, const ITensor *mean, const ITensor *var, const ITensor *beta, const ITensor *gamma, float epsilon, const Window &window) { Iterator input(in, window); Iterator output(out, window); // Hold information about the current feature map we are iterating. // Only compute denominator and NEON vectors once per feature map. int slice = -1; const int fixed_point_position = in->info()->fixed_point_position(); const auto input_mean = reinterpret_cast(mean->ptr_to_element(Coordinates(0, 0))); const auto input_var = reinterpret_cast(var->ptr_to_element(Coordinates(0, 0))); const auto input_gamma = reinterpret_cast(gamma->ptr_to_element(Coordinates(0, 0))); const auto input_beta = reinterpret_cast(beta->ptr_to_element(Coordinates(0, 0))); qint16x8_t mean_vec = vdupq_n_qs16(0); qint16x8_t var_vec = vdupq_n_qs16(0); qint16x8_t gamma_vec = vdupq_n_qs16(0); qint16x8_t beta_vec = vdupq_n_qs16(0); qint16x8_t denominator = vdupq_n_qs16(0); const qint16x8_t epsilon_vec = vdupq_n_qs16(sqcvt_qs16_f32(epsilon, fixed_point_position)); execute_window_loop(window, [&](const Coordinates & id) { if(slice != id.z()) { // Conctruct vectors mean_vec = vdupq_n_qs16(*(input_mean + id.z())); var_vec = vdupq_n_qs16(*(input_var + id.z())); gamma_vec = vdupq_n_qs16(*(input_gamma + id.z())); beta_vec = vdupq_n_qs16(*(input_beta + id.z())); // Calculate denominator denominator = vqinvsqrtq_qs16(vqaddq_qs16(var_vec, epsilon_vec), fixed_point_position); slice = id.z(); } // Calculate x bar and store results const qint16x8_t numerator = vqsubq_qs16(vld1q_qs16(reinterpret_cast(input.ptr())), mean_vec); const qint16x8_t x_bar = vqmulq_qs16(numerator, denominator, fixed_point_position); vst1q_qs16(reinterpret_cast(output.ptr()), vqmlaq_qs16(beta_vec, x_bar, gamma_vec, fixed_point_position)); }, input, output); } void batch_normalization_fp32(ITensor *in, ITensor *out, const ITensor *mean, const ITensor *var, const ITensor *beta, const ITensor *gamma, float epsilon, const Window &window) { Iterator input(in, window); Iterator output(out, window); // Hold information about the current feature map we are iterating. // Only compute denominator and NEON vectors once per feature map. int slice = -1; const auto input_mean = reinterpret_cast(mean->ptr_to_element(Coordinates(0, 0))); const auto input_var = reinterpret_cast(var->ptr_to_element(Coordinates(0, 0))); const auto input_gamma = reinterpret_cast(gamma->ptr_to_element(Coordinates(0, 0))); const auto input_beta = reinterpret_cast(beta->ptr_to_element(Coordinates(0, 0))); float32x4_t mean_vec = vdupq_n_f32(0.0); float32x4_t var_vec = vdupq_n_f32(0.0); float32x4_t gamma_vec = vdupq_n_f32(0.0); float32x4_t beta_vec = vdupq_n_f32(0.0); float32x4_t denominator = vdupq_n_f32(0.0); const float32x4_t epsilon_vec = vdupq_n_f32(epsilon); execute_window_loop(window, [&](const Coordinates & id) { if(slice != id.z()) { // Conctruct vectors mean_vec = vdupq_n_f32(*(input_mean + id.z())); var_vec = vdupq_n_f32(*(input_var + id.z())); gamma_vec = vdupq_n_f32(*(input_gamma + id.z())); beta_vec = vdupq_n_f32(*(input_beta + id.z())); // Calculate denominator denominator = vinvsqrtq_f32(vaddq_f32(var_vec, epsilon_vec)); slice = id.z(); } // Calculate x bar and store results const float32x4_t numerator = vsubq_f32(vld1q_f32(reinterpret_cast(input.ptr())), mean_vec); const float32x4_t x_bar = vmulq_f32(numerator, denominator); vst1q_f32(reinterpret_cast(output.ptr()), vmlaq_f32(beta_vec, x_bar, gamma_vec)); }, input, output); } #ifdef ARM_COMPUTE_ENABLE_FP16 void batch_normalization_fp16(ITensor *in, ITensor *out, const ITensor *mean, const ITensor *var, const ITensor *beta, const ITensor *gamma, float epsilon, const Window &window) { Iterator input(in, window); Iterator output(out, window); // Hold information about the current feature map we are iterating. // Only compute denominator and NEON vectors once per feature map. int slice = -1; const auto input_mean = reinterpret_cast(mean->ptr_to_element(Coordinates(0, 0))); const auto input_var = reinterpret_cast(var->ptr_to_element(Coordinates(0, 0))); const auto input_gamma = reinterpret_cast(gamma->ptr_to_element(Coordinates(0, 0))); const auto input_beta = reinterpret_cast(beta->ptr_to_element(Coordinates(0, 0))); float16x8_t mean_vec = vdupq_n_f16(0.0); float16x8_t var_vec = vdupq_n_f16(0.0); float16x8_t gamma_vec = vdupq_n_f16(0.0); float16x8_t beta_vec = vdupq_n_f16(0.0); float16x8_t denominator = vdupq_n_f16(0.0); const float16x8_t epsilon_vec = vdupq_n_f16(epsilon); execute_window_loop(window, [&](const Coordinates & id) { if(slice != id.z()) { // Conctruct vectors mean_vec = vdupq_n_f16(*(input_mean + id.z())); var_vec = vdupq_n_f16(*(input_var + id.z())); gamma_vec = vdupq_n_f16(*(input_gamma + id.z())); beta_vec = vdupq_n_f16(*(input_beta + id.z())); // Calculate denominator denominator = vinvsqrtq_f16(vaddq_f16(var_vec, epsilon_vec)); slice = id.z(); } // Calculate x bar and store results const float16x8_t numerator = vsubq_f16(vld1q_f16(reinterpret_cast(input.ptr())), mean_vec); const float16x8_t x_bar = vmulq_f16(numerator, denominator); vst1q_f16(reinterpret_cast(output.ptr()), vaddq_f16(beta_vec, vmulq_f16(x_bar, gamma_vec))); }, input, output); } #endif /* ARM_COMPUTE_ENABLE_FP16 */ void NEBatchNormalizationLayerKernel::configure(ITensor *input, ITensor *output, const ITensor *mean, const ITensor *var, const ITensor *beta, const ITensor *gamma, float epsilon) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::QS16, DataType::F16, DataType::F32); _input = input; _output = input; _mean = mean; _var = var; _gamma = gamma; _beta = beta; _epsilon = epsilon; if(output != nullptr) { // Output tensor auto initialization if not yet initialized auto_init_if_empty(*output->info(), input->info()->tensor_shape(), 1, input->info()->data_type(), input->info()->fixed_point_position()); ARM_COMPUTE_ERROR_ON_MISMATCHING_SHAPES(input, output); _output = output; } ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, output, mean, var, beta, gamma); ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT(input, output, mean, var, beta, gamma); ARM_COMPUTE_ERROR_ON_MISMATCHING_SHAPES(mean, var, beta, gamma); ARM_COMPUTE_ERROR_ON(input->info()->dimension(2) != mean->info()->dimension(0)); unsigned int num_elems_processed_per_iteration = 0; switch(input->info()->data_type()) { case DataType::QS8: _func = &batch_normalization_q8; num_elems_processed_per_iteration = 16; break; case DataType::QS16: _func = &batch_normalization_q16; num_elems_processed_per_iteration = 8; break; case DataType::F32: _func = &batch_normalization_fp32; num_elems_processed_per_iteration = 4; break; case DataType::F16: #ifdef ARM_COMPUTE_ENABLE_FP16 _func = &batch_normalization_fp16; num_elems_processed_per_iteration = 8; break; #endif /* ARM_COMPUTE_ENABLE_FP16 */ default: ARM_COMPUTE_ERROR("Element size not supported"); break; } Window win = calculate_max_window(*input->info(), Steps(num_elems_processed_per_iteration)); AccessWindowHorizontal input_access(input->info(), 0, num_elems_processed_per_iteration); if(output != nullptr) { AccessWindowHorizontal output_access(output->info(), 0, num_elems_processed_per_iteration); update_window_and_padding(win, input_access, output_access); output_access.set_valid_region(win, input->info()->valid_region()); } else { update_window_and_padding(win, input_access); } INEKernel::configure(win); } void NEBatchNormalizationLayerKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); ARM_COMPUTE_ERROR_ON(_func == nullptr); (*_func)(_input, _output, _mean, _var, _beta, _gamma, _epsilon, window); }