/* * Copyright (c) 2017-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEBatchNormalizationLayerKernel.h" #include "arm_compute/core/CPP/Validate.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/NEON/NEFixedPoint.h" #include "arm_compute/core/NEON/NEMath.h" #include "arm_compute/core/NEON/kernels/detail/NEActivationFunctionDetail.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include using namespace arm_compute; namespace { Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const ITensorInfo *mean, const ITensorInfo *var, const ITensorInfo *beta, const ITensorInfo *gamma, float epsilon, ActivationLayerInfo act_info) { ARM_COMPUTE_UNUSED(epsilon); ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32); if(act_info.enabled()) { ActivationLayerInfo::ActivationFunction act = act_info.activation(); ARM_COMPUTE_RETURN_ERROR_ON(act != ActivationLayerInfo::ActivationLayerInfo::ActivationFunction::RELU && act != ActivationLayerInfo::ActivationLayerInfo::ActivationFunction::BOUNDED_RELU && act != ActivationLayerInfo::ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU); ARM_COMPUTE_RETURN_ERROR_ON(act_info.b() > act_info.a()); } if(nullptr != output) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); } ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, mean, var); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(mean, var); if(beta != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, beta); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(mean, beta); } if(gamma != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, gamma); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(mean, gamma); } ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL)) != mean->dimension(0)); return Status{}; } std::pair validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, ITensorInfo *mean, ITensorInfo *var, ITensorInfo *gamma, ITensorInfo *beta) { if(output != nullptr) { // Output tensor auto initialization if not yet initialized auto_init_if_empty(*output, *input->clone()); } unsigned int num_elems_processed_per_iteration = 16 / input->element_size(); Window win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration)); AccessWindowHorizontal input_access(input, 0, num_elems_processed_per_iteration); bool window_changed = update_window_and_padding(win, input_access); if(output != nullptr) { AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration); window_changed |= update_window_and_padding(win, output_access); output_access.set_valid_region(win, input->valid_region()); } // Mean, var, gamma and beta get parallelized for the NHWC case as they follow the channel dimension, which is along the first axis if(input->data_layout() == DataLayout::NHWC) { AccessWindowHorizontal mean_access(mean, 0, num_elems_processed_per_iteration); AccessWindowHorizontal var_access(var, 0, num_elems_processed_per_iteration); window_changed |= update_window_and_padding(win, mean_access, var_access); if(gamma != nullptr) { AccessWindowHorizontal gamma_access(gamma, 0, num_elems_processed_per_iteration); window_changed |= update_window_and_padding(win, gamma_access); } if(beta != nullptr) { AccessWindowHorizontal beta_access(beta, 0, num_elems_processed_per_iteration); window_changed |= update_window_and_padding(win, beta_access); } } Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, win); } } //namespace template void NEBatchNormalizationLayerKernel::batch_normalization_fp16_nchw(const Window &window) { ARM_COMPUTE_UNUSED(window); #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC Iterator input(_input, window); Iterator output(_output, window); F activation_functor(_act_info); // Hold information about the current feature map we are iterating. // Only compute denominator and NEON vectors once per feature map. int slice = -1; const auto input_mean = reinterpret_cast(_mean->ptr_to_element(Coordinates(0, 0))); const auto input_var = reinterpret_cast(_var->ptr_to_element(Coordinates(0, 0))); const auto input_gamma = (_gamma != nullptr) ? reinterpret_cast(_gamma->ptr_to_element(Coordinates(0, 0))) : nullptr; const auto input_beta = (_beta != nullptr) ? reinterpret_cast(_beta->ptr_to_element(Coordinates(0, 0))) : nullptr; float16x8_t mean_vec = vdupq_n_f16(0.0); float16x8_t var_vec = vdupq_n_f16(0.0); float16x8_t gamma_vec = vdupq_n_f16(1.0); float16x8_t beta_vec = vdupq_n_f16(0.0); float16x8_t denominator = vdupq_n_f16(0.0); const float16x8_t epsilon_vec = vdupq_n_f16(_epsilon); execute_window_loop(window, [&](const Coordinates & id) { if(slice != id.z()) { // Conctruct vectors mean_vec = vdupq_n_f16(*(input_mean + id.z())); var_vec = vdupq_n_f16(*(input_var + id.z())); if(input_gamma != nullptr) { gamma_vec = vdupq_n_f16(*(input_gamma + id.z())); } if(input_beta != nullptr) { beta_vec = vdupq_n_f16(*(input_beta + id.z())); } // Calculate denominator denominator = vinvsqrtq_f16(vaddq_f16(var_vec, epsilon_vec)); slice = id.z(); } // Calculate x bar and store results const float16x8_t numerator = vsubq_f16(vld1q_f16(reinterpret_cast(input.ptr())), mean_vec); const float16x8_t x_bar = vmulq_f16(numerator, denominator); float16x8_t res = vaddq_f16(beta_vec, vmulq_f16(x_bar, gamma_vec)); // Perform fused activation if(fused_activation) { activation_functor(res); } vst1q_f16(reinterpret_cast(output.ptr()), res); }, input, output); #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ } template void NEBatchNormalizationLayerKernel::batch_normalization_fp16_nhwc(const Window &window) { ARM_COMPUTE_UNUSED(window); #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC Iterator input(_input, window); Iterator output(_output, window); F activation_functor(_act_info); const auto input_mean = reinterpret_cast(_mean->ptr_to_element(Coordinates(0, 0))); const auto input_var = reinterpret_cast(_var->ptr_to_element(Coordinates(0, 0))); const auto input_gamma = (_gamma != nullptr) ? reinterpret_cast(_gamma->ptr_to_element(Coordinates(0, 0))) : nullptr; const auto input_beta = (_beta != nullptr) ? reinterpret_cast(_beta->ptr_to_element(Coordinates(0, 0))) : nullptr; const float16x8_t epsilon_vec = vdupq_n_f16(_epsilon); execute_window_loop(window, [&](const Coordinates & id) { // Conctruct vectors const float16x8_t mean_vec = vld1q_f16(input_mean + id.x()); const float16x8_t var_vec = vld1q_f16(input_var + id.x()); const float16x8_t gamma_vec = (input_gamma != nullptr) ? vld1q_f16(input_gamma + id.x()) : vdupq_n_f16(1.0); const float16x8_t beta_vec = (input_beta != nullptr) ? vld1q_f16(input_beta + id.x()) : vdupq_n_f16(0.0); // Calculate denominator const float16x8_t denominator = vinvsqrtq_f16(vaddq_f16(var_vec, epsilon_vec)); // Calculate x bar and store results const float16x8_t numerator = vsubq_f16(vld1q_f16(reinterpret_cast(input.ptr())), mean_vec); const float16x8_t x_bar = vmulq_f16(numerator, denominator); float16x8_t res = vaddq_f16(beta_vec, vmulq_f16(x_bar, gamma_vec)); // Perform fused activation if(fused_activation) { activation_functor(res); } vst1q_f16(reinterpret_cast(output.ptr()), res); }, input, output); #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ } template void NEBatchNormalizationLayerKernel::batch_normalization_fp32_nchw(const Window &window) { Iterator input(_input, window); Iterator output(_output, window); F activation_functor(_act_info); // Hold information about the current feature map we are iterating. // Only compute denominator and NEON vectors once per feature map. int slice = -1; const auto input_mean = reinterpret_cast(_mean->ptr_to_element(Coordinates(0, 0))); const auto input_var = reinterpret_cast(_var->ptr_to_element(Coordinates(0, 0))); const auto input_gamma = (_gamma != nullptr) ? reinterpret_cast(_gamma->ptr_to_element(Coordinates(0, 0))) : nullptr; const auto input_beta = (_beta != nullptr) ? reinterpret_cast(_beta->ptr_to_element(Coordinates(0, 0))) : nullptr; float32x4_t mean_vec = vdupq_n_f32(0.0); float32x4_t var_vec = vdupq_n_f32(0.0); float32x4_t gamma_vec = vdupq_n_f32(1.0); float32x4_t beta_vec = vdupq_n_f32(0.0); float32x4_t denominator = vdupq_n_f32(0.0); const float32x4_t epsilon_vec = vdupq_n_f32(_epsilon); execute_window_loop(window, [&](const Coordinates & id) { if(slice != id.z()) { // Conctruct vectors mean_vec = vdupq_n_f32(*(input_mean + id.z())); var_vec = vdupq_n_f32(*(input_var + id.z())); if(input_gamma != nullptr) { gamma_vec = vdupq_n_f32(*(input_gamma + id.z())); } if(input_beta != nullptr) { beta_vec = vdupq_n_f32(*(input_beta + id.z())); } // Calculate denominator denominator = vinvsqrtq_f32(vaddq_f32(var_vec, epsilon_vec)); slice = id.z(); } // Calculate x bar const float32x4_t numerator = vsubq_f32(vld1q_f32(reinterpret_cast(input.ptr())), mean_vec); const float32x4_t x_bar = vmulq_f32(numerator, denominator); float32x4_t res = vmlaq_f32(beta_vec, x_bar, gamma_vec); // Perform fused activation if(fused_activation) { activation_functor(res); } // Store results vst1q_f32(reinterpret_cast(output.ptr()), res); }, input, output); } template void NEBatchNormalizationLayerKernel::batch_normalization_fp32_nhwc(const Window &window) { Iterator input(_input, window); Iterator output(_output, window); F activation_functor(_act_info); const auto input_mean = reinterpret_cast(_mean->ptr_to_element(Coordinates(0, 0))); const auto input_var = reinterpret_cast(_var->ptr_to_element(Coordinates(0, 0))); const auto input_gamma = (_gamma != nullptr) ? reinterpret_cast(_gamma->ptr_to_element(Coordinates(0, 0))) : nullptr; const auto input_beta = (_beta != nullptr) ? reinterpret_cast(_beta->ptr_to_element(Coordinates(0, 0))) : nullptr; const float32x4_t epsilon_vec = vdupq_n_f32(_epsilon); execute_window_loop(window, [&](const Coordinates & id) { // Conctruct vectors const float32x4_t mean_vec = vld1q_f32(input_mean + id.x()); const float32x4_t var_vec = vld1q_f32(input_var + id.x()); const float32x4_t gamma_vec = (input_gamma != nullptr) ? vld1q_f32(input_gamma + id.x()) : vdupq_n_f32(1.0); const float32x4_t beta_vec = (input_beta != nullptr) ? vld1q_f32(input_beta + id.x()) : vdupq_n_f32(0.0); // Calculate denominator const float32x4_t denominator = vinvsqrtq_f32(vaddq_f32(var_vec, epsilon_vec)); // Calculate x bar const float32x4_t numerator = vsubq_f32(vld1q_f32(reinterpret_cast(input.ptr())), mean_vec); const float32x4_t x_bar = vmulq_f32(numerator, denominator); float32x4_t res = vmlaq_f32(beta_vec, x_bar, gamma_vec); // Perform fused activation if(fused_activation) { activation_functor(res); } // Store results vst1q_f32(reinterpret_cast(output.ptr()), res); }, input, output); } void NEBatchNormalizationLayerKernel::configure_non_fused() { const bool is_nhwc = _input->info()->data_layout() == DataLayout::NHWC; switch(_input->info()->data_type()) { #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F16: _func = (is_nhwc) ? &NEBatchNormalizationLayerKernel::batch_normalization_fp16_nhwc> : &NEBatchNormalizationLayerKernel::batch_normalization_fp16_nchw>; break; #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F32: _func = (is_nhwc) ? &NEBatchNormalizationLayerKernel::batch_normalization_fp32_nhwc> : &NEBatchNormalizationLayerKernel::batch_normalization_fp32_nchw>; break; default: ARM_COMPUTE_ERROR("Element size not supported"); break; } } void NEBatchNormalizationLayerKernel::configure_fused() { // NCHW Fused Batched Normalization with activation functions : FP32 static std::map bn_fused_map_f32_nchw = { { ActivationLayerInfo::ActivationFunction::RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp32_nchw> }, { ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp32_nchw> }, { ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp32_nchw> } }; // NHWC Fused Batched Normalization with activation functions : FP32 static std::map bn_fused_map_f32_nhwc = { { ActivationLayerInfo::ActivationFunction::RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp32_nhwc> }, { ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp32_nhwc> }, { ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp32_nhwc> } }; #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC // NCHW Fused Batched Normalization with activation functions : FP16 static std::map bn_fused_map_f16_nchw = { { ActivationLayerInfo::ActivationFunction::RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp16_nchw> }, { ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp16_nchw> }, { ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp16_nchw> } }; // NHWC Fused Batched Normalization with activation functions : FP16 static std::map bn_fused_map_f16_nhwc = { { ActivationLayerInfo::ActivationFunction::RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp16_nhwc> }, { ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp16_nhwc> }, { ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, &NEBatchNormalizationLayerKernel::batch_normalization_fp16_nhwc> } }; #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC switch(_input->info()->data_type()) { #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F16: _func = (_input->info()->data_layout() == DataLayout::NHWC) ? bn_fused_map_f16_nhwc[_act_info.activation()] : bn_fused_map_f16_nchw[_act_info.activation()]; break; #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC case DataType::F32: _func = (_input->info()->data_layout() == DataLayout::NHWC) ? bn_fused_map_f32_nhwc[_act_info.activation()] : bn_fused_map_f32_nchw[_act_info.activation()]; break; default: ARM_COMPUTE_ERROR("Element size not supported"); break; } } NEBatchNormalizationLayerKernel::NEBatchNormalizationLayerKernel() : _func(nullptr), _input(nullptr), _output(nullptr), _mean(nullptr), _var(nullptr), _gamma(nullptr), _beta(nullptr), _epsilon(), _act_info() { } void NEBatchNormalizationLayerKernel::configure(ITensor *input, ITensor *output, const ITensor *mean, const ITensor *var, const ITensor *beta, const ITensor *gamma, float epsilon, ActivationLayerInfo act_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, mean, var); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), (output != nullptr) ? output->info() : nullptr, mean->info(), var->info(), (beta != nullptr) ? beta->info() : nullptr, (gamma != nullptr) ? gamma->info() : nullptr, epsilon, act_info)); _input = input; _output = input; _mean = mean; _var = var; _gamma = gamma; _beta = beta; _epsilon = epsilon; _act_info = act_info; const bool run_in_place = (output == nullptr) || (output == input); if(!run_in_place) { _output = output; } // Configure activation function to run if(_act_info.enabled()) { configure_fused(); } else { configure_non_fused(); } // Configure kernel window auto win_config = validate_and_configure_window(input->info(), (run_in_place) ? nullptr : output->info(), mean->info(), var->info(), (gamma != nullptr) ? gamma->info() : nullptr, (beta != nullptr) ? beta->info() : nullptr); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); INEKernel::configure(win_config.second); } Status NEBatchNormalizationLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const ITensorInfo *mean, const ITensorInfo *var, const ITensorInfo *beta, const ITensorInfo *gamma, float epsilon, ActivationLayerInfo act_info) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, mean, var, beta, gamma, epsilon, act_info)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output ? output->clone().get() : nullptr, mean->clone().get(), var->clone().get(), (gamma != nullptr) ? gamma->clone().get() : nullptr, (beta != nullptr) ? beta->clone().get() : nullptr) .first); return Status{}; } void NEBatchNormalizationLayerKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); ARM_COMPUTE_ERROR_ON(_func == nullptr); (this->*_func)(window); }