/* * Copyright (c) 2016-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEArithmeticAdditionKernel.h" #include "arm_compute/core/CPP/Validate.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/IAccessWindow.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/NEON/NEFixedPoint.h" #include "arm_compute/core/NEON/wrapper/wrapper.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Validate.h" #include #include #include #include #include using namespace arm_compute; namespace arm_compute { class Coordinates; } // namespace arm_compute namespace { template void add_same(const ITensor *in1, const ITensor *in2, ITensor *out, ConvertPolicy policy, const Window &window) { ARM_COMPUTE_UNUSED(policy); /** NEON vector tag type. */ using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t; // Create input windows Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); constexpr int window_step_x = 16 / sizeof(T); const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0); if(is_broadcast_across_x) { const bool is_broadcast_input_2 = input2_win.x().step() == 0; Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win; Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win; const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1; const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1; // Clear X Dimension on execution window as we handle manually non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator broadcast_input(broadcast_tensor, broadcast_win); Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win); Iterator output(out, win); execute_window_loop(win, [&](const Coordinates &) { const auto non_broadcast_input_ptr = reinterpret_cast(non_broadcast_input.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); const T broadcast_value = *reinterpret_cast(broadcast_input.ptr()); const auto broadcast_value_vec = wrapper::vdup_n(broadcast_value, ExactTagType{}); // Compute S elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const auto non_broadcast_v = wrapper::vloadq(non_broadcast_input_ptr + x); const auto res = is_sat ? wrapper::vqadd(broadcast_value_vec, non_broadcast_v) : wrapper::vadd(broadcast_value_vec, non_broadcast_v); wrapper::vstore(output_ptr + x, res); } // Compute left-over elements for(; x < window_end_x; ++x) { const auto non_broadcast_v = *(non_broadcast_input_ptr + x); *(output_ptr + x) = is_sat ? wrapper::add_sat(broadcast_value, non_broadcast_v) : broadcast_value + non_broadcast_v; } }, broadcast_input, non_broadcast_input, output); } else { // Clear X Dimension on execution window as we handle manually input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input1(in1, input1_win); Iterator input2(in2, input2_win); Iterator output(out, win); execute_window_loop(win, [&](const Coordinates &) { const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); // Compute S elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const auto val1 = wrapper::vloadq(input1_ptr + x); const auto val2 = wrapper::vloadq(input2_ptr + x); const auto res = is_sat ? wrapper::vqadd(val1, val2) : wrapper::vadd(val1, val2); wrapper::vstore(output_ptr + x, res); } // Compute left-over elements for(; x < window_end_x; ++x) { const auto val1 = *(input1_ptr + x); const auto val2 = *(input2_ptr + x); *(output_ptr + x) = is_sat ? wrapper::add_sat(val1, val2) : val1 + val2; } }, input1, input2, output); } } void add_QASYMM8_QASYMM8_QASYMM8(const ITensor *in1, const ITensor *in2, ITensor *out, ConvertPolicy policy, const Window &window) { ARM_COMPUTE_UNUSED(policy); // Create input windows Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); const int window_step_x = 16; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0); const UniformQuantizationInfo iq1_info = in1->info()->quantization_info().uniform(); const UniformQuantizationInfo iq2_info = in2->info()->quantization_info().uniform(); const UniformQuantizationInfo oq_info = out->info()->quantization_info().uniform(); const float32x4_t vscale1 = vdupq_n_f32(iq1_info.scale); const float32x4_t vscale2 = vdupq_n_f32(iq2_info.scale); const float32x4_t invvscaleo = vdupq_n_f32(1.f / oq_info.scale); const int32x4_t voffset1 = vdupq_n_s32(iq1_info.offset); const int32x4_t voffset2 = vdupq_n_s32(iq2_info.offset); const float32x4_t voffseto = vdupq_n_f32(oq_info.offset); if(is_broadcast_across_x) { const bool is_broadcast_input_2 = input2_win.x().step() == 0; Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win; Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win; const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1; const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1; const UniformQuantizationInfo broadcast_qinfo = broadcast_tensor->info()->quantization_info().uniform(); const UniformQuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info().uniform(); // Clear X Dimension on execution window as we handle manually non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator broadcast_input(broadcast_tensor, broadcast_win); Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win); Iterator output(out, win); execute_window_loop(win, [&](const Coordinates &) { const auto non_broadcast_input_ptr = reinterpret_cast(non_broadcast_input.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); const uint8_t broadcast_value = *reinterpret_cast(broadcast_input.ptr()); const uint8x16_t broadcast_value_vec = vdupq_n_u8(broadcast_value); const float32x4x4_t bf = { { vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(broadcast_value_vec))))), voffset2)), vscale2), vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(broadcast_value_vec))))), voffset2)), vscale2), vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(broadcast_value_vec))))), voffset2)), vscale2), vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(broadcast_value_vec))))), voffset2)), vscale2), } }; const float bfs = static_cast(broadcast_value - broadcast_qinfo.offset) * broadcast_qinfo.scale; // Compute S elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const uint8x16_t a = vld1q_u8(non_broadcast_input_ptr + x); const float32x4x4_t af = { { vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(a))))), voffset1)), vscale1), vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(a))))), voffset1)), vscale1), vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(a))))), voffset1)), vscale1), vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(a))))), voffset1)), vscale1), } }; const int32x4x4_t rf = { { #ifdef __aarch64__ vcvtnq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af.val[0], bf.val[0]), invvscaleo)), vcvtnq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af.val[1], bf.val[1]), invvscaleo)), vcvtnq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af.val[2], bf.val[2]), invvscaleo)), vcvtnq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af.val[3], bf.val[3]), invvscaleo)), #else //__aarch64__ vcvtq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af.val[0], bf.val[0]), invvscaleo)), vcvtq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af.val[1], bf.val[1]), invvscaleo)), vcvtq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af.val[2], bf.val[2]), invvscaleo)), vcvtq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af.val[3], bf.val[3]), invvscaleo)), #endif //__aarch64__ } }; const uint8x8_t pa = vqmovun_s16(vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1]))); const uint8x8_t pb = vqmovun_s16(vcombine_s16(vqmovn_s32(rf.val[2]), vqmovn_s32(rf.val[3]))); vst1q_u8(output_ptr + x, vcombine_u8(pa, pb)); } // Compute left-over elements for(; x < window_end_x; ++x) { const float afs = static_cast(*(non_broadcast_input_ptr + x) - non_broadcast_qinfo.offset) * non_broadcast_qinfo.scale; *(output_ptr + x) = quantize_qasymm8((afs + bfs), oq_info); } }, broadcast_input, non_broadcast_input, output); } else { // Clear X Dimension on execution window as we handle manually input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input1(in1, input1_win); Iterator input2(in2, input2_win); Iterator output(out, win); execute_window_loop(win, [&](const Coordinates &) { const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); // Compute S elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const uint8x16_t a = vld1q_u8(input1_ptr + x); const uint8x16_t b = vld1q_u8(input2_ptr + x); const float32x4x4_t af = { { vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(a))))), voffset1)), vscale1), vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(a))))), voffset1)), vscale1), vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(a))))), voffset1)), vscale1), vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(a))))), voffset1)), vscale1), } }; const float32x4x4_t bf = { { vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(b))))), voffset2)), vscale2), vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(b))))), voffset2)), vscale2), vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(b))))), voffset2)), vscale2), vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(b))))), voffset2)), vscale2), } }; const int32x4x4_t rf = { { #ifdef __aarch64__ vcvtnq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af.val[0], bf.val[0]), invvscaleo)), vcvtnq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af.val[1], bf.val[1]), invvscaleo)), vcvtnq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af.val[2], bf.val[2]), invvscaleo)), vcvtnq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af.val[3], bf.val[3]), invvscaleo)), #else //__aarch64__ vcvtq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af.val[0], bf.val[0]), invvscaleo)), vcvtq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af.val[1], bf.val[1]), invvscaleo)), vcvtq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af.val[2], bf.val[2]), invvscaleo)), vcvtq_s32_f32(vmlaq_f32(voffseto, vaddq_f32(af.val[3], bf.val[3]), invvscaleo)), #endif //__aarch64__ } }; const uint8x8_t pa = vqmovun_s16(vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1]))); const uint8x8_t pb = vqmovun_s16(vcombine_s16(vqmovn_s32(rf.val[2]), vqmovn_s32(rf.val[3]))); vst1q_u8(output_ptr + x, vcombine_u8(pa, pb)); } // Compute left-over elements for(; x < window_end_x; ++x) { const float afs = static_cast((*(input1_ptr + x)) - iq1_info.offset) * iq1_info.scale; const float bfs = static_cast((*(input2_ptr + x)) - iq2_info.offset) * iq2_info.scale; *(output_ptr + x) = quantize_qasymm8((afs + bfs), out->info()->quantization_info()); } }, input1, input2, output); } } void add_QSYMM16_QSYMM16_QSYMM16(const ITensor *in1, const ITensor *in2, ITensor *out, ConvertPolicy policy, const Window &window) { ARM_COMPUTE_UNUSED(policy); // Create input windows Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); const int window_step_x = 8; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0); const UniformQuantizationInfo iq1_info = in1->info()->quantization_info().uniform(); const UniformQuantizationInfo iq2_info = in2->info()->quantization_info().uniform(); const UniformQuantizationInfo oq_info = out->info()->quantization_info().uniform(); const float32x4_t vscale1 = vdupq_n_f32(iq1_info.scale); const float32x4_t vscale2 = vdupq_n_f32(iq2_info.scale); const float32x4_t invvscaleo = vdupq_n_f32(1.f / oq_info.scale); if(is_broadcast_across_x) { const bool is_broadcast_input_2 = input2_win.x().step() == 0; Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win; Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win; const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1; const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1; const UniformQuantizationInfo broadcast_qinfo = broadcast_tensor->info()->quantization_info().uniform(); const UniformQuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info().uniform(); // Clear X Dimension on execution window as we handle manually non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator broadcast_input(broadcast_tensor, broadcast_win); Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win); Iterator output(out, win); execute_window_loop(win, [&](const Coordinates &) { const auto non_broadcast_input_ptr = reinterpret_cast(non_broadcast_input.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); const int16_t broadcast_value = *reinterpret_cast(broadcast_input.ptr()); const int16x8_t broadcast_value_vec = vdupq_n_s16(broadcast_value); const float32x4x2_t bf = { { vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(broadcast_value_vec))), vscale2), vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(broadcast_value_vec))), vscale2), } }; const float bfs = static_cast(broadcast_value) * broadcast_qinfo.scale; // Compute S elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const int16x8_t a = vld1q_s16(non_broadcast_input_ptr + x); const float32x4x2_t af = { { vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(a))), vscale1), vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(a))), vscale1), } }; const int32x4x4_t rf = { { #ifdef __aarch64__ vcvtnq_s32_f32(vmulq_f32(vaddq_f32(af.val[0], bf.val[0]), invvscaleo)), vcvtnq_s32_f32(vmulq_f32(vaddq_f32(af.val[1], bf.val[1]), invvscaleo)), #else //__aarch64__ vcvtq_s32_f32(vmulq_f32(vaddq_f32(af.val[0], bf.val[0]), invvscaleo)), vcvtq_s32_f32(vmulq_f32(vaddq_f32(af.val[1], bf.val[1]), invvscaleo)), #endif //__aarch64__ } }; const int16x8_t pa = vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])); vst1q_s16(output_ptr + x, pa); } // Compute left-over elements for(; x < window_end_x; ++x) { const float afs = static_cast(*(non_broadcast_input_ptr + x)) * non_broadcast_qinfo.scale; *(output_ptr + x) = quantize_qsymm16((afs + bfs), oq_info); } }, broadcast_input, non_broadcast_input, output); } else { // Clear X Dimension on execution window as we handle manually input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input1(in1, input1_win); Iterator input2(in2, input2_win); Iterator output(out, win); execute_window_loop(win, [&](const Coordinates &) { const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); // Compute S elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const int16x8_t a = vld1q_s16(input1_ptr + x); const int16x8_t b = vld1q_s16(input2_ptr + x); const float32x4x2_t af = { { vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(a))), vscale1), vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(a))), vscale1), } }; const float32x4x2_t bf = { { vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(b))), vscale2), vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(b))), vscale2), } }; const int32x4x2_t rf = { { #ifdef __aarch64__ vcvtnq_s32_f32(vmulq_f32(vaddq_f32(af.val[0], bf.val[0]), invvscaleo)), vcvtnq_s32_f32(vmulq_f32(vaddq_f32(af.val[1], bf.val[1]), invvscaleo)), #else //__aarch64__ vcvtq_s32_f32(vmulq_f32(vaddq_f32(af.val[0], bf.val[0]), invvscaleo)), vcvtq_s32_f32(vmulq_f32(vaddq_f32(af.val[1], bf.val[1]), invvscaleo)), #endif //__aarch64__ } }; const int16x8_t pa = vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])); vst1q_s16(output_ptr + x, pa); } // Compute left-over elements for(; x < window_end_x; ++x) { const float afs = static_cast((*(input1_ptr + x))) * iq1_info.scale; const float bfs = static_cast((*(input2_ptr + x))) * iq2_info.scale; *(output_ptr + x) = quantize_qsymm16((afs + bfs), out->info()->quantization_info()); } }, input1, input2, output); } } void add_S16_U8_S16(const ITensor *in1, const ITensor *in2, ITensor *out, ConvertPolicy policy, const Window &window) { // Create input windows Window win = window; Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually win.set(Window::DimX, Window::Dimension(0, 1, 1)); input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input1(in1, input1_win); Iterator input2(in2, input2_win); Iterator output(out, win); const int window_step_x = 8; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); execute_window_loop(win, [&](const Coordinates &) { const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); if(policy == ConvertPolicy::WRAP) { // Compute S elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const auto vin1 = wrapper::vloadq(input1_ptr + x); const auto vin2 = vreinterpretq_s16_u16(wrapper::vmovl(wrapper::vload(input2_ptr + x))); wrapper::vstore(output_ptr + x, wrapper::vadd(vin1, vin2)); } // Compute left-over elements for(; x < window_end_x; ++x) { *(output_ptr + x) = *(input1_ptr + x) + static_cast(*(input2_ptr + x)); } } else { // Compute S elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const auto vin1 = wrapper::vloadq(input1_ptr + x); const auto vin2 = vreinterpretq_s16_u16(wrapper::vmovl(wrapper::vload(input2_ptr + x))); wrapper::vstore(output_ptr + x, wrapper::vqadd(vin1, vin2)); } // Compute left-over elements for(; x < window_end_x; ++x) { *(output_ptr + x) = wrapper::add_sat(*(input1_ptr + x), static_cast(*(input2_ptr + x))); } } }, input1, input2, output); } inline void add_U8_S16_S16(const ITensor *input1, const ITensor *input2, ITensor *output, ConvertPolicy policy, const Window &window) { // Simply swap the two input buffers: add_S16_U8_S16(input2, input1, output, policy, window); } void add_U8_U8_S16(const ITensor *in1, const ITensor *in2, ITensor *out, ConvertPolicy policy, const Window &window) { // Create input windows Window win = window; Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually win.set(Window::DimX, Window::Dimension(0, 1, 1)); input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input1(in1, input1_win); Iterator input2(in2, input2_win); Iterator output(out, win); const int window_step_x = 8; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); execute_window_loop(win, [&](const Coordinates &) { const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); if(policy == ConvertPolicy::WRAP) { // Compute S elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const auto vin1 = vreinterpretq_s16_u16(wrapper::vmovl(wrapper::vload(input1_ptr + x))); const auto vin2 = vreinterpretq_s16_u16(wrapper::vmovl(wrapper::vload(input2_ptr + x))); wrapper::vstore(output_ptr + x, wrapper::vadd(vin1, vin2)); } // Compute left-over elements for(; x < window_end_x; ++x) { *(output_ptr + x) = static_cast(*(input1_ptr + x)) + static_cast(*(input2_ptr + x)); } } else { // Compute S elements per iteration int x = window_start_x; for(; x <= (window_end_x - window_step_x); x += window_step_x) { const auto vin1 = vreinterpretq_s16_u16(wrapper::vmovl(wrapper::vload(input1_ptr + x))); const auto vin2 = vreinterpretq_s16_u16(wrapper::vmovl(wrapper::vload(input2_ptr + x))); wrapper::vstore(output_ptr + x, wrapper::vqadd(vin1, vin2)); } // Compute left-over elements for(; x < window_end_x; ++x) { *(output_ptr + x) = wrapper::add_sat(static_cast(*(input1_ptr + x)), static_cast(*(input2_ptr + x))); } } }, input1, input2, output); } Status validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output, ConvertPolicy policy) { ARM_COMPUTE_UNUSED(policy); ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&input1); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input1, 1, DataType::U8, DataType::QASYMM8, DataType::S16, DataType::QSYMM16, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input2, 1, DataType::U8, DataType::QASYMM8, DataType::S16, DataType::QSYMM16, DataType::F16, DataType::F32); const TensorShape out_shape = TensorShape::broadcast_shape(input1.tensor_shape(), input2.tensor_shape()); ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible"); ARM_COMPUTE_RETURN_ERROR_ON_MSG((input1.tensor_shape().x() != input2.tensor_shape().x()) && ((input1.data_type() != input2.data_type()) || (input1.data_type() != output.data_type()) || (input2.data_type() != output.data_type())), "Broadcasting across width is supported on configurations where all tensors have the same data type"); // Validate in case of configured output if(output.total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_MSG( !(input1.data_type() == DataType::U8 && input2.data_type() == DataType::U8 && output.data_type() == DataType::U8) && !(input1.data_type() == DataType::U8 && input2.data_type() == DataType::U8 && output.data_type() == DataType::S16) && !(input1.data_type() == DataType::U8 && input2.data_type() == DataType::S16 && output.data_type() == DataType::S16) && !(input1.data_type() == DataType::S16 && input2.data_type() == DataType::U8 && output.data_type() == DataType::S16) && !(input1.data_type() == DataType::S16 && input2.data_type() == DataType::S16 && output.data_type() == DataType::S16) && !(input1.data_type() == DataType::F32 && input2.data_type() == DataType::F32 && output.data_type() == DataType::F32) && !(input1.data_type() == DataType::F16 && input2.data_type() == DataType::F16 && output.data_type() == DataType::F16) && !(input1.data_type() == DataType::QASYMM8 && input2.data_type() == DataType::QASYMM8 && output.data_type() == DataType::QASYMM8) && !(input1.data_type() == DataType::QSYMM16 && input2.data_type() == DataType::QSYMM16 && output.data_type() == DataType::QSYMM16), "You called addition with the wrong image formats"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output.tensor_shape(), 0), "Wrong shape for output"); } return Status{}; } std::pair validate_and_configure_window(ITensorInfo &input1, ITensorInfo &input2, ITensorInfo &output) { const std::pair broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(input1, input2); const TensorShape &out_shape = broadcast_pair.first; const ValidRegion &valid_region = broadcast_pair.second; // Auto initialize output if not initialized { set_shape_if_empty(output, out_shape); if(input1.data_type() == DataType::S16 || input2.data_type() == DataType::S16) { set_format_if_unknown(output, Format::S16); } else if(input1.data_type() == DataType::F16 && input2.data_type() == DataType::F16) { set_format_if_unknown(output, Format::F16); } else if(input1.data_type() == DataType::F32 || input2.data_type() == DataType::F32) { set_format_if_unknown(output, Format::F32); } else if(input1.data_type() == DataType::QASYMM8) { set_data_type_if_unknown(output, DataType::QASYMM8); } else if(input1.data_type() == DataType::QSYMM16) { set_data_type_if_unknown(output, DataType::QSYMM16); } } Window win = calculate_max_window(valid_region, Steps()); // NEArithmeticAdditionKernel doesn't need padding so update_window_and_padding() can be skipped Coordinates coord; coord.set_num_dimensions(output.num_dimensions()); output.set_valid_region(valid_region); return std::make_pair(Status{}, win); } } // namespace NEArithmeticAdditionKernel::NEArithmeticAdditionKernel() : _func(nullptr), _input1(nullptr), _input2(nullptr), _output(nullptr), _policy() { } void NEArithmeticAdditionKernel::configure(const ITensor *input1, const ITensor *input2, ITensor *output, ConvertPolicy policy) { ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*input1->info(), *input2->info(), *output->info(), policy)); // Configure kernel window auto win_config = validate_and_configure_window(*input1->info(), *input2->info(), *output->info()); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); static std::map map_function = { { "add_wrap_QASYMM8_QASYMM8_QASYMM8", &add_QASYMM8_QASYMM8_QASYMM8 }, { "add_saturate_QASYMM8_QASYMM8_QASYMM8", &add_QASYMM8_QASYMM8_QASYMM8 }, { "add_wrap_QSYMM16_QSYMM16_QSYMM16", &add_QSYMM16_QSYMM16_QSYMM16 }, { "add_saturate_QSYMM16_QSYMM16_QSYMM16", &add_QSYMM16_QSYMM16_QSYMM16 }, { "add_wrap_U8_U8_U8", &add_same }, { "add_saturate_U8_U8_U8", &add_same }, { "add_wrap_S16_U8_S16", &add_S16_U8_S16 }, { "add_saturate_S16_U8_S16", &add_S16_U8_S16 }, { "add_wrap_U8_S16_S16", &add_U8_S16_S16 }, { "add_saturate_U8_S16_S16", &add_U8_S16_S16 }, { "add_wrap_U8_U8_S16", &add_U8_U8_S16 }, { "add_saturate_U8_U8_S16", &add_U8_U8_S16 }, { "add_wrap_S16_S16_S16", &add_same }, { "add_saturate_S16_S16_S16", &add_same }, { "add_wrap_F32_F32_F32", &add_same }, { "add_saturate_F32_F32_F32", &add_same }, #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC { "add_wrap_F16_F16_F16", &add_same }, { "add_saturate_F16_F16_F16", &add_same }, #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ }; _input1 = input1; _input2 = input2; _output = output; _policy = policy; std::string function_to_call("add_"); function_to_call += policy == ConvertPolicy::WRAP ? "wrap_" : "saturate_"; function_to_call += string_from_data_type(input1->info()->data_type()) + "_"; function_to_call += string_from_data_type(input2->info()->data_type()) + "_"; function_to_call += string_from_data_type(output->info()->data_type()); auto it = map_function.find(function_to_call); if(it != map_function.end()) { _func = it->second; } INEKernel::configure(win_config.second); } Status NEArithmeticAdditionKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, ConvertPolicy policy) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*input1, *input2, *output, policy)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(*input1->clone(), *input2->clone(), *output->clone()).first); return Status{}; } void NEArithmeticAdditionKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); ARM_COMPUTE_ERROR_ON(_func == nullptr); (*_func)(_input1, _input2, _output, _policy, window); }