/* * Copyright (c) 2016-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEArithmeticAdditionKernel.h" #include "arm_compute/core/CPP/Validate.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/IAccessWindow.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/NEON/NEFixedPoint.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Validate.h" #include #include #include #include #include using namespace arm_compute; namespace arm_compute { class Coordinates; } // namespace arm_compute namespace { constexpr unsigned int num_elems_processed_per_iteration = 16; void add_wrap_U8_U8_U8(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window) { Iterator input1(in1, window.broadcast_if_dimension_le_one(in1->info()->tensor_shape())); Iterator input2(in2, window.broadcast_if_dimension_le_one(in2->info()->tensor_shape())); Iterator output(out, window); execute_window_loop(window, [&](const Coordinates & id) { vst1q_u8(output.ptr(), vaddq_u8(vld1q_u8(input1.ptr()), vld1q_u8(input2.ptr()))); }, input1, input2, output); } void add_saturate_U8_U8_U8(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window) { Iterator input1(in1, window.broadcast_if_dimension_le_one(in1->info()->tensor_shape())); Iterator input2(in2, window.broadcast_if_dimension_le_one(in2->info()->tensor_shape())); Iterator output(out, window); execute_window_loop(window, [&](const Coordinates & id) { vst1q_u8(output.ptr(), vqaddq_u8(vld1q_u8(input1.ptr()), vld1q_u8(input2.ptr()))); }, input1, input2, output); } inline int16x8x2_t vadd2q_s16(const int16x8x2_t &a, const int16x8x2_t &b) { const int16x8x2_t res = { { vaddq_s16(a.val[0], b.val[0]), vaddq_s16(a.val[1], b.val[1]) } }; return res; } inline float32x4x4_t vadd4q_f32(const float32x4x4_t &a, const float32x4x4_t &b) { const float32x4x4_t res = { { vaddq_f32(a.val[0], b.val[0]), vaddq_f32(a.val[1], b.val[1]), vaddq_f32(a.val[2], b.val[2]), vaddq_f32(a.val[3], b.val[3]) } }; return res; } inline int16x8x2_t vqadd2q_s16(const int16x8x2_t &a, const int16x8x2_t &b) { const int16x8x2_t res = { { vqaddq_s16(a.val[0], b.val[0]), vqaddq_s16(a.val[1], b.val[1]) } }; return res; } #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC inline float16x8x2_t vadd2q_f16(const float16x8x2_t &a, const float16x8x2_t &b) { const float16x8x2_t res = { { vaddq_f16(a.val[0], b.val[0]), vaddq_f16(a.val[1], b.val[1]) } }; return res; } #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ void add_F16_F16_F16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window) { #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC Iterator input1(in1, window.broadcast_if_dimension_le_one(in1->info()->tensor_shape())); Iterator input2(in2, window.broadcast_if_dimension_le_one(in2->info()->tensor_shape())); Iterator output(out, window); execute_window_loop(window, [&](const Coordinates & id) { const float16x8x2_t a = vld2q_f16(reinterpret_cast(input1.ptr())); const float16x8x2_t b = vld2q_f16(reinterpret_cast(input2.ptr())); vst2q_f16(reinterpret_cast(output.ptr()), vadd2q_f16(a, b)); }, input1, input2, output); #else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ ARM_COMPUTE_UNUSED(in1); ARM_COMPUTE_UNUSED(in2); ARM_COMPUTE_UNUSED(out); ARM_COMPUTE_UNUSED(window); ARM_COMPUTE_ERROR("Not supported, recompile the library with arch=arm64-v8.2-a"); #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ } void add_F32_F32_F32(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window) { Iterator input1(in1, window.broadcast_if_dimension_le_one(in1->info()->tensor_shape())); Iterator input2(in2, window.broadcast_if_dimension_le_one(in2->info()->tensor_shape())); Iterator output(out, window); execute_window_loop(window, [&](const Coordinates & id) { const float32x4x4_t a = vld4q_f32(reinterpret_cast(input1.ptr())); const float32x4x4_t b = vld4q_f32(reinterpret_cast(input2.ptr())); vst4q_f32(reinterpret_cast(output.ptr()), vadd4q_f32(a, b)); }, input1, input2, output); } void add_wrap_S16_S16_S16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window) { Iterator input1(in1, window.broadcast_if_dimension_le_one(in1->info()->tensor_shape())); Iterator input2(in2, window.broadcast_if_dimension_le_one(in2->info()->tensor_shape())); Iterator output(out, window); execute_window_loop(window, [&](const Coordinates & id) { const int16x8x2_t a = vld2q_s16(reinterpret_cast(input1.ptr())); const int16x8x2_t b = vld2q_s16(reinterpret_cast(input2.ptr())); vst2q_s16(reinterpret_cast(output.ptr()), vadd2q_s16(a, b)); }, input1, input2, output); } void add_saturate_S16_S16_S16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window) { Iterator input1(in1, window.broadcast_if_dimension_le_one(in1->info()->tensor_shape())); Iterator input2(in2, window.broadcast_if_dimension_le_one(in2->info()->tensor_shape())); Iterator output(out, window); execute_window_loop(window, [&](const Coordinates & id) { const int16x8x2_t a = vld2q_s16(reinterpret_cast(input1.ptr())); const int16x8x2_t b = vld2q_s16(reinterpret_cast(input2.ptr())); vst2q_s16(reinterpret_cast(output.ptr()), vqadd2q_s16(a, b)); }, input1, input2, output); } void add_wrap_S16_U8_S16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window) { Iterator input1(in1, window.broadcast_if_dimension_le_one(in1->info()->tensor_shape())); Iterator input2(in2, window.broadcast_if_dimension_le_one(in2->info()->tensor_shape())); Iterator output(out, window); execute_window_loop(window, [&](const Coordinates & id) { const int16x8x2_t a = { { vld1q_s16(reinterpret_cast(input1.ptr())), vld1q_s16(reinterpret_cast(input1.ptr()) + 8) } }; const uint8x16_t b = vld1q_u8(input2.ptr()); vst1q_s16(reinterpret_cast(output.ptr()), vaddq_s16(a.val[0], vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(b))))); vst1q_s16(reinterpret_cast(output.ptr()) + 8, vaddq_s16(a.val[1], vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(b))))); }, input1, input2, output); } void add_saturate_S16_U8_S16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window) { Iterator input1(in1, window.broadcast_if_dimension_le_one(in1->info()->tensor_shape())); Iterator input2(in2, window.broadcast_if_dimension_le_one(in2->info()->tensor_shape())); Iterator output(out, window); execute_window_loop(window, [&](const Coordinates & id) { const int16x8x2_t a = { { vld1q_s16(reinterpret_cast(input1.ptr())), vld1q_s16(reinterpret_cast(input1.ptr()) + 8) } }; const uint8x16_t b = vld1q_u8(input2.ptr()); vst1q_s16(reinterpret_cast(output.ptr()), vqaddq_s16(a.val[0], vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(b))))); vst1q_s16(reinterpret_cast(output.ptr()) + 8, vqaddq_s16(a.val[1], vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(b))))); }, input1, input2, output); } inline void add_wrap_U8_S16_S16(const ITensor *input1, const ITensor *input2, ITensor *output, const Window &window) { //Simply swap the two input buffers: add_wrap_S16_U8_S16(input2, input1, output, window); } inline void add_saturate_U8_S16_S16(const ITensor *input1, const ITensor *input2, ITensor *output, const Window &window) { //Simply swap the two input buffers: add_saturate_S16_U8_S16(input2, input1, output, window); } void add_wrap_U8_U8_S16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window) { Iterator input1(in1, window.broadcast_if_dimension_le_one(in1->info()->tensor_shape())); Iterator input2(in2, window.broadcast_if_dimension_le_one(in2->info()->tensor_shape())); Iterator output(out, window); execute_window_loop(window, [&](const Coordinates & id) { const uint8x16_t a = vld1q_u8(input1.ptr()); const uint8x16_t b = vld1q_u8(input2.ptr()); const int16x8x2_t a_s16 = { { vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(a))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(a))) } }; const int16x8x2_t b_s16 = { { vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(b))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(b))) } }; vst1q_s16(reinterpret_cast(output.ptr()), vaddq_s16(a_s16.val[0], b_s16.val[0])); vst1q_s16(reinterpret_cast(output.ptr()) + 8, vaddq_s16(a_s16.val[1], b_s16.val[1])); }, input1, input2, output); } void add_saturate_U8_U8_S16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window) { Iterator input1(in1, window.broadcast_if_dimension_le_one(in1->info()->tensor_shape())); Iterator input2(in2, window.broadcast_if_dimension_le_one(in2->info()->tensor_shape())); Iterator output(out, window); execute_window_loop(window, [&](const Coordinates & id) { const uint8x16_t a = vld1q_u8(input1.ptr()); const uint8x16_t b = vld1q_u8(input2.ptr()); const int16x8x2_t a_s16 = { { vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(a))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(a))) } }; const int16x8x2_t b_s16 = { { vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(b))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(b))) } }; vst1q_s16(reinterpret_cast(output.ptr()), vqaddq_s16(a_s16.val[0], b_s16.val[0])); vst1q_s16(reinterpret_cast(output.ptr()) + 8, vqaddq_s16(a_s16.val[1], b_s16.val[1])); }, input1, input2, output); } Status validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output, ConvertPolicy policy) { ARM_COMPUTE_UNUSED(policy); ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&input1); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input1, 1, DataType::U8, DataType::S16, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input2, 1, DataType::U8, DataType::S16, DataType::F16, DataType::F32); const TensorShape out_shape = TensorShape::broadcast_shape(input1.tensor_shape(), input2.tensor_shape()); ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible"); // Validate in case of configured output if(output.total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_MSG( !(input1.data_type() == DataType::U8 && input2.data_type() == DataType::U8 && output.data_type() == DataType::U8) && !(input1.data_type() == DataType::U8 && input2.data_type() == DataType::U8 && output.data_type() == DataType::S16) && !(input1.data_type() == DataType::U8 && input2.data_type() == DataType::S16 && output.data_type() == DataType::S16) && !(input1.data_type() == DataType::S16 && input2.data_type() == DataType::U8 && output.data_type() == DataType::S16) && !(input1.data_type() == DataType::S16 && input2.data_type() == DataType::S16 && output.data_type() == DataType::S16) && !(input1.data_type() == DataType::F32 && input2.data_type() == DataType::F32 && output.data_type() == DataType::F32) && !(input1.data_type() == DataType::F16 && input2.data_type() == DataType::F16 && output.data_type() == DataType::F16), "You called addition with the wrong image formats"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output.tensor_shape(), 0), "Wrong shape for output"); } return Status{}; } std::pair validate_and_configure_window(ITensorInfo &input1, ITensorInfo &input2, ITensorInfo &output) { const std::pair broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(input1, input2); const TensorShape &out_shape = broadcast_pair.first; const ValidRegion &valid_region = broadcast_pair.second; // Auto initialize output if not initialized { set_shape_if_empty(output, out_shape); if(input1.data_type() == DataType::S16 || input2.data_type() == DataType::S16) { set_format_if_unknown(output, Format::S16); } else if(input1.data_type() == DataType::F16 && input2.data_type() == DataType::F16) { set_format_if_unknown(output, Format::F16); } else if(input1.data_type() == DataType::F32 || input2.data_type() == DataType::F32) { set_format_if_unknown(output, Format::F32); } } Window win = calculate_max_window(valid_region, Steps(num_elems_processed_per_iteration)); Window win_input1 = win.broadcast_if_dimension_le_one(input1); Window win_input2 = win.broadcast_if_dimension_le_one(input2); AccessWindowHorizontal input1_access(&input1, 0, num_elems_processed_per_iteration); AccessWindowHorizontal input2_access(&input2, 0, num_elems_processed_per_iteration); AccessWindowHorizontal output_access(&output, 0, num_elems_processed_per_iteration); bool window_changed = update_window_and_padding(win_input1, input1_access) || update_window_and_padding(win_input2, input2_access) || update_window_and_padding(win, output_access); output_access.set_valid_region(win, valid_region); Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, win); } } // namespace NEArithmeticAdditionKernel::NEArithmeticAdditionKernel() : _func(nullptr), _input1(nullptr), _input2(nullptr), _output(nullptr) { } void NEArithmeticAdditionKernel::configure(const ITensor *input1, const ITensor *input2, ITensor *output, ConvertPolicy policy) { ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*input1->info(), *input2->info(), *output->info(), policy)); // Configure kernel window auto win_config = validate_and_configure_window(*input1->info(), *input2->info(), *output->info()); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); static std::map map_function = { { "add_wrap_U8_U8_U8", &add_wrap_U8_U8_U8 }, { "add_saturate_U8_U8_U8", &add_saturate_U8_U8_U8 }, { "add_wrap_S16_U8_S16", &add_wrap_S16_U8_S16 }, { "add_saturate_S16_U8_S16", &add_saturate_S16_U8_S16 }, { "add_wrap_U8_S16_S16", &add_wrap_U8_S16_S16 }, { "add_saturate_U8_S16_S16", &add_saturate_U8_S16_S16 }, { "add_wrap_U8_U8_S16", &add_wrap_U8_U8_S16 }, { "add_saturate_U8_U8_S16", &add_saturate_U8_U8_S16 }, { "add_wrap_S16_S16_S16", &add_wrap_S16_S16_S16 }, { "add_saturate_S16_S16_S16", &add_saturate_S16_S16_S16 }, { "add_wrap_F32_F32_F32", &add_F32_F32_F32 }, { "add_saturate_F32_F32_F32", &add_F32_F32_F32 }, { "add_wrap_F16_F16_F16", &add_F16_F16_F16 }, { "add_saturate_F16_F16_F16", &add_F16_F16_F16 }, }; _input1 = input1; _input2 = input2; _output = output; std::string function_to_call("add_"); function_to_call += policy == ConvertPolicy::WRAP ? "wrap_" : "saturate_"; function_to_call += string_from_data_type(input1->info()->data_type()) + "_"; function_to_call += string_from_data_type(input2->info()->data_type()) + "_"; function_to_call += string_from_data_type(output->info()->data_type()); auto it = map_function.find(function_to_call); if(it != map_function.end()) { _func = it->second; } INEKernel::configure(win_config.second); } Status NEArithmeticAdditionKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, ConvertPolicy policy) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*input1, *input2, *output, policy)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(*input1->clone(), *input2->clone(), *output->clone()).first); return Status{}; } void NEArithmeticAdditionKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); ARM_COMPUTE_ERROR_ON(_func == nullptr); (*_func)(_input1, _input2, _output, window); } BorderSize NEArithmeticAdditionKernel::border_size() const { const unsigned int replicateSize = _output->info()->dimension(0) - std::min(_input1->info()->dimension(0), _input2->info()->dimension(0)); const unsigned int border = std::min(num_elems_processed_per_iteration - 1U, replicateSize); return BorderSize(0, border, 0, 0); }