/* * Copyright (c) 2016-2021 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/core/NEON/kernels/NEArithmeticAdditionKernel.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/Validate.h" #include "src/core/CPP/Validate.h" #include "src/core/NEON/kernels/arithmetic_addition/impl/NEON/list.h" #include "src/core/NEON/kernels/arithmetic_addition/impl/SVE/list.h" #include "src/core/NEON/wrapper/wrapper.h" #include "src/core/common/Registrars.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/WindowHelpers.h" #include #include namespace arm_compute { namespace { struct ArithmeticAdditionSelectorData { DataType dt1; DataType dt2; DataType dt3; }; using ArithmeticAdditionSelectorPtr = std::add_pointer::type; struct ArithmeticAdditionKernel { const char *name; const ArithmeticAdditionSelectorPtr is_selected; NEArithmeticAdditionKernel::ArithmeticAdditionKernelPtr ukernel; }; static const ArithmeticAdditionKernel available_kernels[] = { #if defined(__ARM_FEATURE_SVE) { "arithmetic_addition_same_sve", [](const ArithmeticAdditionSelectorData & data) { return ((data.dt1 == data.dt2) && (data.dt1 == DataType::F32)); }, REGISTER_FP32_SVE(arm_compute::cpu::arithmetic_addition_same_sve) }, { "arithmetic_addition_same_sve", [](const ArithmeticAdditionSelectorData & data) { return ((data.dt1 == data.dt2) && (data.dt1 == DataType::F16)); }, REGISTER_FP16_SVE(arm_compute::cpu::arithmetic_addition_same_sve) }, { "arithmetic_addition_same_sve", [](const ArithmeticAdditionSelectorData & data) { return ((data.dt1 == data.dt2) && (data.dt1 == data.dt3) && (data.dt1 == DataType::U8)); }, REGISTER_INTEGER_SVE(arm_compute::cpu::arithmetic_addition_same_sve) }, { "arithmetic_addition_same_sve", [](const ArithmeticAdditionSelectorData & data) { return ((data.dt1 == data.dt2) && (data.dt1 == data.dt3) && (data.dt1 == DataType::S16)); }, REGISTER_INTEGER_SVE(arm_compute::cpu::arithmetic_addition_same_sve) }, { "arithmetic_addition_same_sve", [](const ArithmeticAdditionSelectorData & data) { return ((data.dt1 == data.dt2) && (data.dt1 == data.dt3) && (data.dt1 == DataType::S32)); }, REGISTER_INTEGER_SVE(arm_compute::cpu::arithmetic_addition_same_sve) }, { "arithmetic_addition_U8_S16_S16_sve", [](const ArithmeticAdditionSelectorData & data) { return ((data.dt1 == DataType::U8) && (data.dt2 == DataType::S16)); }, REGISTER_INTEGER_SVE(arm_compute::cpu::arithmetic_addition_U8_S16_S16_sve) }, { "arithmetic_addition_S16_U8_S16_sve", [](const ArithmeticAdditionSelectorData & data) { return ((data.dt1 == DataType::S16) && (data.dt2 == DataType::U8)); }, REGISTER_INTEGER_SVE(arm_compute::cpu::arithmetic_addition_S16_U8_S16_sve) }, { "arithmetic_addition_U8_U8_S16_sve", [](const ArithmeticAdditionSelectorData & data) { return ((data.dt1 == data.dt2) && (data.dt3 == DataType::S16)); }, REGISTER_INTEGER_SVE(arm_compute::cpu::arithmetic_addition_U8_U8_S16_sve) }, #else /* !defined(__ARM_FEATURE_SVE) */ { "arithmetic_addition_same_neon", [](const ArithmeticAdditionSelectorData & data) { return ((data.dt1 == data.dt2) && (data.dt1 == DataType::F32)); }, REGISTER_FP32_NEON(arm_compute::cpu::arithmetic_addition_same_neon) }, #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) { "arithmetic_addition_same_neon", [](const ArithmeticAdditionSelectorData & data) { return ((data.dt1 == data.dt2) && (data.dt1 == DataType::F16)); }, REGISTER_FP16_NEON(arm_compute::cpu::arithmetic_addition_same_neon) }, #endif /* defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) */ { "arithmetic_addition_same_neon", [](const ArithmeticAdditionSelectorData & data) { return ((data.dt1 == data.dt2) && (data.dt1 == data.dt3) && (data.dt1 == DataType::U8)); }, REGISTER_INTEGER_NEON(arm_compute::cpu::arithmetic_addition_same_neon) }, { "arithmetic_addition_same_neon", [](const ArithmeticAdditionSelectorData & data) { return ((data.dt1 == data.dt2) && (data.dt1 == data.dt3) && (data.dt1 == DataType::S16)); }, REGISTER_INTEGER_NEON(arm_compute::cpu::arithmetic_addition_same_neon) }, { "arithmetic_addition_same_neon", [](const ArithmeticAdditionSelectorData & data) { return ((data.dt1 == data.dt2) && (data.dt1 == data.dt3) && (data.dt1 == DataType::S32)); }, REGISTER_INTEGER_NEON(arm_compute::cpu::arithmetic_addition_same_neon) }, { "arithmetic_addition_U8_S16_S16_neon", [](const ArithmeticAdditionSelectorData & data) { return ((data.dt1 == DataType::U8) && (data.dt2 == DataType::S16)); }, REGISTER_INTEGER_NEON(arm_compute::cpu::arithmetic_addition_U8_S16_S16_neon) }, { "arithmetic_addition_S16_U8_S16_neon", [](const ArithmeticAdditionSelectorData & data) { return ((data.dt1 == DataType::S16) && (data.dt2 == DataType::U8)); }, REGISTER_INTEGER_NEON(arm_compute::cpu::arithmetic_addition_S16_U8_S16_neon) }, { "arithmetic_addition_U8_U8_S16_neon", [](const ArithmeticAdditionSelectorData & data) { return ((data.dt1 == data.dt2) && (data.dt3 == DataType::S16)); }, REGISTER_INTEGER_NEON(arm_compute::cpu::arithmetic_addition_U8_U8_S16_neon) }, #endif /* defined(__ARM_FEATURE_SVE) */ #if defined(__ARM_FEATURE_SVE2) { "arithmetic_addition_qasymm8_sve", [](const ArithmeticAdditionSelectorData & data) { return ((data.dt1 == data.dt2) && (data.dt1 == DataType::QASYMM8)); }, REGISTER_QASYMM8_SVE(arm_compute::cpu::arithmetic_addition_qasymm8_sve) }, { "arithmetic_addition_qasymm8_signed_sve", [](const ArithmeticAdditionSelectorData & data) { return ((data.dt1 == data.dt2) && (data.dt1 == DataType::QASYMM8_SIGNED)); }, REGISTER_QASYMM8_SIGNED_SVE(arm_compute::cpu::arithmetic_addition_qasymm8_signed_sve) }, { "arithmetic_addition_qsymm16_sve", [](const ArithmeticAdditionSelectorData & data) { return ((data.dt1 == data.dt2) && (data.dt1 == DataType::QSYMM16)); }, REGISTER_QSYMM16_SVE(arm_compute::cpu::arithmetic_addition_qsymm16_sve) }, #else /* !defined(__ARM_FEATURE_SVE2) */ { "arithmetic_addition_qasymm8_neon", [](const ArithmeticAdditionSelectorData & data) { return ((data.dt1 == data.dt2) && (data.dt1 == DataType::QASYMM8)); }, REGISTER_QASYMM8_NEON(arm_compute::cpu::arithmetic_addition_qasymm8_neon) }, { "arithmetic_addition_qasymm8_signed_neon", [](const ArithmeticAdditionSelectorData & data) { return ((data.dt1 == data.dt2) && (data.dt1 == DataType::QASYMM8_SIGNED)); }, REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::arithmetic_addition_qasymm8_signed_neon) }, { "arithmetic_addition_qsymm16_neon", [](const ArithmeticAdditionSelectorData & data) { return ((data.dt1 == data.dt2) && (data.dt1 == DataType::QSYMM16)); }, REGISTER_QSYMM16_NEON(arm_compute::cpu::arithmetic_addition_qsymm16_neon) }, #endif /* defined(__ARM_FEATURE_SVE2) */ }; const ArithmeticAdditionKernel *get_implementation(DataType dt1, DataType dt2, DataType dt3) { for(const auto &uk : available_kernels) { if(uk.is_selected({ dt1, dt2, dt3 })) { return &uk; } } return nullptr; } Status validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output, ConvertPolicy policy) { ARM_COMPUTE_UNUSED(policy); ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&input1); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input1, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S16, DataType::QSYMM16, DataType::F16, DataType::S32, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input2, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S16, DataType::QSYMM16, DataType::F16, DataType::S32, DataType::F32); const TensorShape out_shape = TensorShape::broadcast_shape(input1.tensor_shape(), input2.tensor_shape()); ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible"); ARM_COMPUTE_RETURN_ERROR_ON_MSG((input1.tensor_shape().x() != input2.tensor_shape().x()) && ((input1.data_type() != input2.data_type()) || (input1.data_type() != output.data_type()) || (input2.data_type() != output.data_type())), "Broadcasting across width is supported on configurations where all tensors have the same data type"); // Validate in case of configured output if(output.total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_MSG( !(input1.data_type() == DataType::U8 && input2.data_type() == DataType::U8 && output.data_type() == DataType::U8) && !(input1.data_type() == DataType::U8 && input2.data_type() == DataType::U8 && output.data_type() == DataType::S16) && !(input1.data_type() == DataType::U8 && input2.data_type() == DataType::S16 && output.data_type() == DataType::S16) && !(input1.data_type() == DataType::S16 && input2.data_type() == DataType::U8 && output.data_type() == DataType::S16) && !(input1.data_type() == DataType::S16 && input2.data_type() == DataType::S16 && output.data_type() == DataType::S16) && !(input1.data_type() == DataType::S32 && input2.data_type() == DataType::S32 && output.data_type() == DataType::S32) && !(input1.data_type() == DataType::F32 && input2.data_type() == DataType::F32 && output.data_type() == DataType::F32) && !(input1.data_type() == DataType::F16 && input2.data_type() == DataType::F16 && output.data_type() == DataType::F16) && !(input1.data_type() == DataType::QASYMM8 && input2.data_type() == DataType::QASYMM8 && output.data_type() == DataType::QASYMM8) && !(input1.data_type() == DataType::QASYMM8_SIGNED && input2.data_type() == DataType::QASYMM8_SIGNED && output.data_type() == DataType::QASYMM8_SIGNED) && !(input1.data_type() == DataType::QSYMM16 && input2.data_type() == DataType::QSYMM16 && output.data_type() == DataType::QSYMM16), "You called addition with the wrong image formats"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output.tensor_shape(), 0), "Wrong shape for output"); } return Status{}; } std::pair validate_and_configure_window(const ITensorInfo &input1, const ITensorInfo &input2, ITensorInfo &output) { const std::pair broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(input1, input2); const TensorShape &out_shape = broadcast_pair.first; const ValidRegion &valid_region = broadcast_pair.second; // Auto initialize output if not initialized { set_shape_if_empty(output, out_shape); if(input1.data_type() == DataType::S16 || input2.data_type() == DataType::S16) { set_format_if_unknown(output, Format::S16); } if(input1.data_type() == DataType::S32 || input2.data_type() == DataType::S32) { set_format_if_unknown(output, Format::S32); } else if(input1.data_type() == DataType::F16 || input2.data_type() == DataType::F16) { set_format_if_unknown(output, Format::F16); } else if(input1.data_type() == DataType::F32 || input2.data_type() == DataType::F32) { set_format_if_unknown(output, Format::F32); } else if(input1.data_type() == DataType::QASYMM8 || input2.data_type() == DataType::QASYMM8) { set_data_type_if_unknown(output, DataType::QASYMM8); } else if(input1.data_type() == DataType::QASYMM8_SIGNED || input2.data_type() == DataType::QASYMM8_SIGNED) { set_data_type_if_unknown(output, DataType::QASYMM8_SIGNED); } else if(input1.data_type() == DataType::QSYMM16 || input2.data_type() == DataType::QSYMM16) { set_data_type_if_unknown(output, DataType::QSYMM16); } } Window win = calculate_max_window(valid_region, Steps()); // NEArithmeticAdditionKernel doesn't need padding so update_window_and_padding() can be skipped Coordinates coord; coord.set_num_dimensions(output.num_dimensions()); output.set_valid_region(valid_region); return std::make_pair(Status{}, win); } } // namespace NEArithmeticAdditionKernel::NEArithmeticAdditionKernel() : _func(nullptr), _policy() { } void NEArithmeticAdditionKernel::configure(const ITensorInfo *input1, const ITensorInfo *input2, ITensorInfo *output, ConvertPolicy policy) { ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*input1, *input2, *output, policy)); _policy = policy; _func = get_implementation(input1->data_type(), input2->data_type(), output->data_type())->ukernel; // Configure kernel window auto win_config = validate_and_configure_window(*input1, *input2, *output); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); INEKernel::configure(win_config.second); } Status NEArithmeticAdditionKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, ConvertPolicy policy) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*input1, *input2, *output, policy)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(*input1->clone(), *input2->clone(), *output->clone()).first); return Status{}; } void NEArithmeticAdditionKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); // Dispatch kernel (*_func)(tensors.get_const_tensor(TensorType::ACL_SRC_0), tensors.get_const_tensor(TensorType::ACL_SRC_1), tensors.get_tensor(TensorType::ACL_DST), _policy, window); } } // namespace arm_compute