/* * Copyright (c) 2016-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/kernels/NEAccumulateKernel.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/IAccessWindow.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Validate.h" #include using namespace arm_compute; namespace arm_compute { class Coordinates; } // namespace arm_compute /* Max S16 value used for saturation purposes. */ const static uint16x8_t max_int_u16 = vdupq_n_u16(static_cast(INT16_MAX)); #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC namespace fp16 { inline float16x8x2_t convert_u8x16_to_f16x8x2(uint8x16_t input) { const float16x8x2_t out = { { vcvtq_f16_u16(vmovl_u8(vget_low_u8(input))), vcvtq_f16_u16(vmovl_u8(vget_high_u8(input))) } }; return out; } inline uint8x16_t convert_f16x8x2_to_u8x16(const float16x8x2_t &input) { return vcombine_u8(vmovn_u16(vcvtq_u16_f16(input.val[0])), vmovn_u16(vcvtq_u16_f16(input.val[1]))); } inline float16x8x2_t vector_accumulate_weighted(const float16x8x2_t &vec0, const float16x8x2_t &vec1, float16x8_t scale_val, float16x8_t scale_val2) { const float16x8x2_t res = { { vfmaq_f16(vmulq_f16(vec1.val[0], scale_val), vec0.val[0], scale_val2), vfmaq_f16(vmulq_f16(vec1.val[1], scale_val), vec0.val[1], scale_val2) } }; return res; } void acc_we_v16_u8(const void *__restrict input, void *__restrict accum, float16x8_t scale_val, float16x8_t scale_val2) { ARM_COMPUTE_ERROR_ON(nullptr == input); ARM_COMPUTE_ERROR_ON(nullptr == accum); const auto input_ptr = static_cast(input); const auto accum_ptr = static_cast(accum); const uint8x16x4_t input_buffer = vld4q_u8(input_ptr); uint8x16x4_t accum_buffer = vld4q_u8(accum_ptr); const float16x8x2_t f16_input_0 = convert_u8x16_to_f16x8x2(input_buffer.val[0]); const float16x8x2_t f16_input_1 = convert_u8x16_to_f16x8x2(input_buffer.val[1]); const float16x8x2_t f16_input_2 = convert_u8x16_to_f16x8x2(input_buffer.val[2]); const float16x8x2_t f16_input_3 = convert_u8x16_to_f16x8x2(input_buffer.val[3]); float16x8x2_t f16_accum_0 = convert_u8x16_to_f16x8x2(accum_buffer.val[0]); float16x8x2_t f16_accum_1 = convert_u8x16_to_f16x8x2(accum_buffer.val[1]); float16x8x2_t f16_accum_2 = convert_u8x16_to_f16x8x2(accum_buffer.val[2]); float16x8x2_t f16_accum_3 = convert_u8x16_to_f16x8x2(accum_buffer.val[3]); f16_accum_0 = vector_accumulate_weighted(f16_input_0, f16_accum_0, scale_val, scale_val2); f16_accum_1 = vector_accumulate_weighted(f16_input_1, f16_accum_1, scale_val, scale_val2); f16_accum_2 = vector_accumulate_weighted(f16_input_2, f16_accum_2, scale_val, scale_val2); f16_accum_3 = vector_accumulate_weighted(f16_input_3, f16_accum_3, scale_val, scale_val2); accum_buffer = { { convert_f16x8x2_to_u8x16(f16_accum_0), convert_f16x8x2_to_u8x16(f16_accum_1), convert_f16x8x2_to_u8x16(f16_accum_2), convert_f16x8x2_to_u8x16(f16_accum_3) } }; vst4q_u8(accum_ptr, accum_buffer); } } // namespace fp16 void NEAccumulateWeightedFP16Kernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INESimpleKernel::window(), window); Iterator input(_input, window); Iterator accum(_output, window); const float16x8_t scale_val = vdupq_n_f16(1.f - _alpha); const float16x8_t scale_val2 = vdupq_n_f16(_alpha); execute_window_loop(window, [&](const Coordinates &) { fp16::acc_we_v16_u8(input.ptr(), accum.ptr(), scale_val, scale_val2); }, input, accum); } #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ namespace { inline void acc_v16_u8(const void *__restrict input, void *__restrict accum) { ARM_COMPUTE_ERROR_ON(nullptr == input); ARM_COMPUTE_ERROR_ON(nullptr == accum); const auto in = static_cast(input); const auto out = static_cast(accum); uint8x16_t ta1 = vld1q_u8(in); int16x8_t ta2 = vld1q_s16(out); int16x8_t ta3 = vld1q_s16(out + 8); ta2 = vqaddq_s16(ta2, vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(ta1)))); ta3 = vqaddq_s16(ta3, vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(ta1)))); vst1q_s16(out, ta2); vst1q_s16(out + 8, ta3); } inline float32x4x4_t convert_u8x16_to_f32x4x4(uint8x16_t input) { const uint16x8_t u16_output_low = vmovl_u8(vget_low_u8(input)); const uint16x8_t u16_output_hi = vmovl_u8(vget_high_u8(input)); const float32x4x4_t res = { { vcvtq_f32_u32(vmovl_u16(vget_low_u16(u16_output_low))), vcvtq_f32_u32(vmovl_u16(vget_high_u16(u16_output_low))), vcvtq_f32_u32(vmovl_u16(vget_low_u16(u16_output_hi))), vcvtq_f32_u32(vmovl_u16(vget_high_u16(u16_output_hi))) } }; return res; } inline uint8x16_t convert_f32x4x4_to_u8x16(const float32x4x4_t &input) { return vcombine_u8(vmovn_u16(vcombine_u16(vmovn_u32(vcvtq_u32_f32(input.val[0])), vmovn_u32(vcvtq_u32_f32(input.val[1])))), vmovn_u16(vcombine_u16(vmovn_u32(vcvtq_u32_f32(input.val[2])), vmovn_u32(vcvtq_u32_f32(input.val[3]))))); } inline float32x4x4_t vector_accumulate_weighted(const float32x4x4_t &vector_input, float32x4x4_t vector_output, float32x4_t scale_val, float32x4_t scale_val2) { vector_output.val[0] = vmulq_f32(vector_output.val[0], scale_val); vector_output.val[1] = vmulq_f32(vector_output.val[1], scale_val); vector_output.val[2] = vmulq_f32(vector_output.val[2], scale_val); vector_output.val[3] = vmulq_f32(vector_output.val[3], scale_val); vector_output.val[0] = vmlaq_f32(vector_output.val[0], vector_input.val[0], scale_val2); vector_output.val[1] = vmlaq_f32(vector_output.val[1], vector_input.val[1], scale_val2); vector_output.val[2] = vmlaq_f32(vector_output.val[2], vector_input.val[2], scale_val2); vector_output.val[3] = vmlaq_f32(vector_output.val[3], vector_input.val[3], scale_val2); return vector_output; } inline void acc_we_v16_u8(const void *__restrict input, void *__restrict accum, const float32x4_t scale_val, const float32x4_t scale_val2) { ARM_COMPUTE_ERROR_ON(nullptr == input); ARM_COMPUTE_ERROR_ON(nullptr == accum); const auto input_ptr = static_cast(input); const auto accum_ptr = static_cast(accum); const uint8x16_t input_buffer = vld1q_u8(input_ptr); const uint8x16_t accum_buffer = vld1q_u8(accum_ptr); const float32x4x4_t f32_input_0 = convert_u8x16_to_f32x4x4(input_buffer); const float32x4x4_t f32_output_0 = convert_u8x16_to_f32x4x4(accum_buffer); const float32x4x4_t f32_res_0 = vector_accumulate_weighted(f32_input_0, f32_output_0, scale_val, scale_val2); vst1q_u8(accum_ptr, convert_f32x4x4_to_u8x16(f32_res_0)); } void acc_sq_v16_u8(const void *__restrict input, uint32_t shift, void *__restrict accum) { ARM_COMPUTE_ERROR_ON(nullptr == input); ARM_COMPUTE_ERROR_ON(nullptr == accum); ARM_COMPUTE_ERROR_ON(shift > 15); const auto input_buffer = static_cast(input); const auto accum_buffer = static_cast(accum); const uint8x16_t ta1 = vld1q_u8(input_buffer); uint16x8_t ta2 = vreinterpretq_u16_s16(vld1q_s16(accum_buffer)); uint16x8_t ta3 = vreinterpretq_u16_s16(vld1q_s16(accum_buffer + 8)); const int16x8_t vector_shift = vdupq_n_s16(-static_cast(shift)); uint16x8_t linput = vmovl_u8(vget_low_u8(ta1)); uint16x8_t hinput = vmovl_u8(vget_high_u8(ta1)); linput = vmulq_u16(linput, linput); hinput = vmulq_u16(hinput, hinput); linput = vqshlq_u16(linput, vector_shift); hinput = vqshlq_u16(hinput, vector_shift); ta2 = vqaddq_u16(ta2, linput); ta3 = vqaddq_u16(ta3, hinput); vst1q_s16(accum_buffer, vreinterpretq_s16_u16(vminq_u16(max_int_u16, ta2))); vst1q_s16(accum_buffer + 8, vreinterpretq_s16_u16(vminq_u16(max_int_u16, ta3))); } } // namespace void NEAccumulateKernel::configure(const ITensor *input, ITensor *accum) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, accum); set_shape_if_empty(*accum->info(), input->info()->tensor_shape()); set_format_if_unknown(*accum->info(), Format::S16); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(accum, 1, DataType::S16); ARM_COMPUTE_ERROR_ON_MISMATCHING_SHAPES(input, accum); constexpr unsigned int num_elems_processed_per_iteration = 16; INESimpleKernel::configure(input, accum, num_elems_processed_per_iteration); } void NEAccumulateKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INESimpleKernel::window(), window); Iterator input(_input, window); Iterator accum(_output, window); execute_window_loop(window, [&](const Coordinates &) { acc_v16_u8(input.ptr(), accum.ptr()); }, input, accum); } NEAccumulateWeightedKernel::NEAccumulateWeightedKernel() : _alpha(0.0f) { } void NEAccumulateWeightedKernel::configure(const ITensor *input, float alpha, ITensor *accum) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, accum); set_shape_if_empty(*accum->info(), input->info()->tensor_shape()); set_format_if_unknown(*accum->info(), Format::U8); ARM_COMPUTE_ERROR_ON_MISMATCHING_SHAPES(input, accum); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(accum, 1, DataType::U8); ARM_COMPUTE_ERROR_ON(alpha < 0.0 || alpha > 1.0); _alpha = alpha; constexpr unsigned int num_elems_processed_per_iteration = 16; INESimpleKernel::configure(input, accum, num_elems_processed_per_iteration); } void NEAccumulateWeightedKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INESimpleKernel::window(), window); Iterator input(_input, window); Iterator accum(_output, window); const float32x4_t scale_val = vdupq_n_f32(1.f - _alpha); const float32x4_t scale_val2 = vdupq_n_f32(_alpha); execute_window_loop(window, [&](const Coordinates &) { acc_we_v16_u8(input.ptr(), accum.ptr(), scale_val, scale_val2); }, input, accum); } NEAccumulateSquaredKernel::NEAccumulateSquaredKernel() : _shift(0) { } void NEAccumulateSquaredKernel::configure(const ITensor *input, uint32_t shift, ITensor *accum) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, accum); set_shape_if_empty(*accum->info(), input->info()->tensor_shape()); set_format_if_unknown(*accum->info(), Format::S16); ARM_COMPUTE_ERROR_ON_MISMATCHING_SHAPES(input, accum); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(accum, 1, DataType::S16); ARM_COMPUTE_ERROR_ON(shift > 15); _shift = shift; constexpr unsigned int num_elems_processed_per_iteration = 16; INESimpleKernel::configure(input, accum, num_elems_processed_per_iteration); } void NEAccumulateSquaredKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INESimpleKernel::window(), window); Iterator input(_input, window); Iterator accum(_output, window); execute_window_loop(window, [&](const Coordinates &) { acc_sq_v16_u8(input.ptr(), _shift, accum.ptr()); }, input, accum); }