/* * Copyright (c) 2020-2023 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef ACL_SRC_CORE_NEON_SVEMATH_INL #define ACL_SRC_CORE_NEON_SVEMATH_INL #include #include #if defined(__ARM_FEATURE_SVE) && defined(ARM_COMPUTE_ENABLE_SVE) #ifndef M_PI #define M_PI (3.14159265358979323846) #endif // M_PI namespace arm_compute { inline svfloat32_t svtaylor_poly_f32_z(svbool_t pg, svfloat32_t x, svfloat32_t coeff_1, svfloat32_t coeff_2, svfloat32_t coeff_3, svfloat32_t coeff_4, svfloat32_t coeff_5, svfloat32_t coeff_6, svfloat32_t coeff_7, svfloat32_t coeff_8) { const auto A = svmla_f32_z(pg, coeff_1, coeff_5, x); const auto B = svmla_f32_z(pg, coeff_3, coeff_7, x); const auto C = svmla_f32_z(pg, coeff_2, coeff_6, x); const auto D = svmla_f32_z(pg, coeff_4, coeff_8, x); const auto x2 = svmul_f32_z(pg, x, x); const auto x4 = svmul_f32_z(pg, x2, x2); const auto res = svmla_f32_z(pg, svmla_f32_z(pg, A, B, x2), svmla_f32_z(pg, C, D, x2), x4); return res; } inline svfloat16_t svtaylor_poly_f16_z(svbool_t pg, svfloat16_t x, svfloat16_t coeff_1, svfloat16_t coeff_2, svfloat16_t coeff_3, svfloat16_t coeff_4, svfloat16_t coeff_5, svfloat16_t coeff_6, svfloat16_t coeff_7, svfloat16_t coeff_8) { const auto A = svmla_f16_z(pg, coeff_1, coeff_5, x); const auto B = svmla_f16_z(pg, coeff_3, coeff_7, x); const auto C = svmla_f16_z(pg, coeff_2, coeff_6, x); const auto D = svmla_f16_z(pg, coeff_4, coeff_8, x); const auto x2 = svmul_f16_z(pg, x, x); const auto x4 = svmul_f16_z(pg, x2, x2); const auto res = svmla_f16_z(pg, svmla_f16_z(pg, A, B, x2), svmla_f16_z(pg, C, D, x2), x4); return res; } inline svfloat16_t svinv_f16_z(svbool_t pg, svfloat16_t x) { auto recip = svrecpe_f16(x); recip = svmul_f16_z(pg, svrecps_f16(x, recip), recip); recip = svmul_f16_z(pg, svrecps_f16(x, recip), recip); return recip; } inline svfloat32_t svinv_f32_z(svbool_t pg, svfloat32_t x) { auto recip = svrecpe_f32(x); recip = svmul_f32_z(pg, svrecps_f32(x, recip), recip); recip = svmul_f32_z(pg, svrecps_f32(x, recip), recip); return recip; } static const uint32_t svexp_f32_coeff[] = { 0x3f7ffff6, // x^1: 0x1.ffffecp-1f 0x3efffedb, // x^2: 0x1.fffdb6p-2f 0x3e2aaf33, // x^3: 0x1.555e66p-3f 0x3d2b9f17, // x^4: 0x1.573e2ep-5f 0x3c072010, // x^5: 0x1.0e4020p-7f }; inline svfloat32_t svexp_f32_z(svbool_t pg, svfloat32_t x) { const auto c1 = svreinterpret_f32_u32(svdup_n_u32(svexp_f32_coeff[0])); const auto c2 = svreinterpret_f32_u32(svdup_n_u32(svexp_f32_coeff[1])); const auto c3 = svreinterpret_f32_u32(svdup_n_u32(svexp_f32_coeff[2])); const auto c4 = svreinterpret_f32_u32(svdup_n_u32(svexp_f32_coeff[3])); const auto c5 = svreinterpret_f32_u32(svdup_n_u32(svexp_f32_coeff[4])); const auto shift = svreinterpret_f32_u32(svdup_n_u32(0x4b00007f)); // 2^23 + 127 = 0x1.0000fep23f const auto inv_ln2 = svreinterpret_f32_u32(svdup_n_u32(0x3fb8aa3b)); // 1 / ln(2) = 0x1.715476p+0f const auto neg_ln2_hi = svreinterpret_f32_u32(svdup_n_u32(0xbf317200)); // -ln(2) from bits -1 to -19: -0x1.62e400p-1f const auto neg_ln2_lo = svreinterpret_f32_u32(svdup_n_u32(0xb5bfbe8e)); // -ln(2) from bits -20 to -42: -0x1.7f7d1cp-20f const auto inf = svdup_n_f32(std::numeric_limits::infinity()); const auto max_input = svdup_n_f32(88.37f); // Approximately ln(2^127.5) const auto zero = svdup_n_f32(0.f); const auto min_input = svdup_n_f32(-86.64f); // Approximately ln(2^-125) // Range reduction: // e^x = 2^n * e^r // where: // n = floor(x / ln(2)) // r = x - n * ln(2) // // By adding x / ln(2) with 2^23 + 127 (shift): // * As FP32 fraction part only has 23-bits, the addition of 2^23 + 127 forces decimal part // of x / ln(2) out of the result. The integer part of x / ln(2) (i.e. n) + 127 will occupy // the whole fraction part of z in FP32 format. // Subtracting 2^23 + 127 (shift) from z will result in the integer part of x / ln(2) // (i.e. n) because the decimal part has been pushed out and lost. // * The addition of 127 makes the FP32 fraction part of z ready to be used as the exponent // in FP32 format. Left shifting z by 23 bits will result in 2^n. const auto z = svmla_f32_z(pg, shift, x, inv_ln2); const auto n = svsub_f32_z(pg, z, shift); const auto scale = svreinterpret_f32_u32(svlsl_n_u32_z(pg, svreinterpret_u32_f32(z), 23)); // 2^n // The calculation of n * ln(2) is done using 2 steps to achieve accuracy beyond FP32. // This outperforms longer Taylor series (3-4 tabs) both in term of accuracy and performance. const auto r_hi = svmla_f32_z(pg, x, n, neg_ln2_hi); const auto r = svmla_f32_z(pg, r_hi, n, neg_ln2_lo); // Compute the truncated Taylor series of e^r. // poly = scale * (1 + c1 * r + c2 * r^2 + c3 * r^3 + c4 * r^4 + c5 * r^5) const auto r2 = svmul_f32_z(pg, r, r); const auto p1 = svmul_f32_z(pg, c1, r); const auto p23 = svmla_f32_z(pg, c2, c3, r); const auto p45 = svmla_f32_z(pg, c4, c5, r); const auto p2345 = svmla_f32_z(pg, p23, p45, r2); const auto p12345 = svmla_f32_z(pg, p1, p2345, r2); auto poly = svmla_f32_z(pg, scale, p12345, scale); // Handle underflow and overflow. poly = svsel_f32(svcmplt_f32(pg, x, min_input), zero, poly); poly = svsel_f32(svcmpgt_f32(pg, x, max_input), inf, poly); return poly; } inline svfloat16_t svexp_f16_z(svbool_t pg, svfloat16_t x) { auto bottom = svcvt_f32_z(pg, x); auto pg_top = svptrue_b16(); auto top = svcvt_f32_z(pg_top, svreinterpret_f16(svrevh_z(svptrue_b16(), svreinterpret_u32(x)))); bottom = svexp_f32_z(pg, bottom); top = svexp_f32_z(pg_top, top); return svtrn1(svcvt_f16_z(pg, bottom), svcvt_f16_z(pg_top, top)); } #ifdef ARM_COMPUTE_ENABLE_SVE2 inline svfloat16_t svexp_f16_z_sve2(svbool_t pg, svfloat16_t x) { auto bottom = svcvt_f32_z(pg, x); auto top = svcvtlt_f32_x(pg, x); auto pg_top = pg; bottom = svexp_f32_z(pg, bottom); top = svexp_f32_z(pg_top, top); return svcvtnt_f16_m(svcvt_f16_z(pg, bottom), pg_top, top); } #endif // ARM_COMPUTE_ENABLE_SVE2 inline svfloat32_t svtanh_f32_z(svbool_t pg, svfloat32_t val) { const svfloat32_t CONST_1 = svdup_n_f32(1.f); const svfloat32_t CONST_2 = svdup_n_f32(2.f); const svfloat32_t CONST_MIN_TANH = svdup_n_f32(-10.f); const svfloat32_t CONST_MAX_TANH = svdup_n_f32(10.f); svfloat32_t x = svmin_f32_z(pg, svmax_f32_z(pg, val, CONST_MIN_TANH), CONST_MAX_TANH); svfloat32_t exp2x = svexp_f32_z(pg, svmul_f32_z(pg, CONST_2, x)); svfloat32_t num = svsub_f32_z(pg, exp2x, CONST_1); svfloat32_t den = svadd_f32_z(pg, exp2x, CONST_1); svfloat32_t tanh = svdiv_f32_z(pg, num, den); return tanh; } inline svfloat16_t svtanh_f16_z(svbool_t pg, svfloat16_t val) { const svfloat16_t CONST_1 = svdup_n_f16(1.f); const svfloat16_t CONST_2 = svdup_n_f16(2.f); const svfloat16_t CONST_MIN_TANH = svdup_n_f16(-10.f); const svfloat16_t CONST_MAX_TANH = svdup_n_f16(10.f); const svfloat16_t x = svmin_f16_z(pg, svmax_f16_z(pg, val, CONST_MIN_TANH), CONST_MAX_TANH); const svfloat16_t exp2x = svexp_f16_z(pg, svmul_f16_z(pg, CONST_2, x)); const svfloat16_t num = svsub_f16_z(pg, exp2x, CONST_1); const svfloat16_t den = svadd_f16_z(pg, exp2x, CONST_1); const svfloat16_t tanh = svdiv_f16_z(pg, num, den); return tanh; } inline svfloat32_t svlog_f32_z(svbool_t pg, svfloat32_t x) { /** Logarithm polynomial coefficients */ const svfloat32_t log_tab_1 = svdup_n_f32(-2.29561495781f); const svfloat32_t log_tab_2 = svdup_n_f32(-2.47071170807f); const svfloat32_t log_tab_3 = svdup_n_f32(-5.68692588806f); const svfloat32_t log_tab_4 = svdup_n_f32(-0.165253549814f); const svfloat32_t log_tab_5 = svdup_n_f32(5.17591238022f); const svfloat32_t log_tab_6 = svdup_n_f32(0.844007015228f); const svfloat32_t log_tab_7 = svdup_n_f32(4.58445882797f); const svfloat32_t log_tab_8 = svdup_n_f32(0.0141278216615f); const auto CONST_127 = svdup_n_s32(127); // 127 const auto CONST_LN2 = svdup_n_f32(0.6931471805f); // ln(2) // Extract exponent auto m = svsub_s32_z(pg, svasr_n_s32_z(pg, svreinterpret_s32_f32(x), 23), CONST_127); auto val = svreinterpret_f32_s32(svsub_s32_z(pg, svreinterpret_s32_f32(x), svlsl_n_s32_z(pg, m, 23))); // Polynomial Approximation auto poly = svtaylor_poly_f32_z(pg, val, log_tab_1, log_tab_2, log_tab_3, log_tab_4, log_tab_5, log_tab_6, log_tab_7, log_tab_8); // Reconstruct poly = svmla_f32_z(pg, poly, svcvt_f32_s32_z(pg, m), CONST_LN2); return poly; } inline svfloat16_t svlog_f16_z(svbool_t pg, svfloat16_t x) { auto bottom = svcvt_f32_z(pg, x); auto pg_top = svptrue_b16(); auto top = svcvt_f32_z(pg_top, svreinterpret_f16(svrevh_z(svptrue_b16(), svreinterpret_u32(x)))); bottom = svlog_f32_z(pg, bottom); top = svlog_f32_z(pg_top, top); return svtrn1(svcvt_f16_z(pg, bottom), svcvt_f16_z(pg_top, top)); } #ifdef ARM_COMPUTE_ENABLE_SVE2 inline svfloat16_t svlog_f16_z_sve2(svbool_t pg, svfloat16_t x) { auto bottom = svcvt_f32_z(pg, x); auto top = svcvtlt_f32_x(pg, x); auto pg_top = pg; bottom = svlog_f32_z(pg, bottom); top = svlog_f32_z(pg_top, top); return svcvtnt_f16_m(svcvt_f16_z(pg, bottom), pg_top, top); } #endif // ARM_COMPUTE_ENABLE_SVE2 inline svfloat32_t svsin_f32_z(svbool_t pg, svfloat32_t val) { using ScalarType = float; using IntType = uint32_t; constexpr float te_sin_coeff2 = 0.166666666666f; // 1/(2*3) constexpr float te_sin_coeff3 = 0.05f; // 1/(4*5) constexpr float te_sin_coeff4 = 0.023809523810f; // 1/(6*7) constexpr float te_sin_coeff5 = 0.013888888889f; // 1/(8*9) const auto pi_v = wrapper::svdup_n(ScalarType(M_PI)); const auto pio2_v = wrapper::svdup_n(ScalarType(M_PI / 2)); const auto ipi_v = wrapper::svdup_n(ScalarType(1 / M_PI)); //Find positive or negative const auto c_v = svabs_z(pg, wrapper::svcvt_z(pg, svmul_z(pg, val, ipi_v))); const auto sign_v = svcmple(pg, val, wrapper::svdup_n(ScalarType(0))); const auto odd_v = svcmpne(pg, svand_z(pg, wrapper::svreinterpret(c_v), wrapper::svdup_n(IntType(1))), wrapper::svdup_n(IntType(0))); auto neg_v = sveor_z(pg, odd_v, sign_v); //Modulus a - (n * int(a*(1/n))) auto ma = svsub_z(pg, svabs_z(pg, val), svmul_z(pg, pi_v, wrapper::svcvt_z(pg, c_v))); const auto reb_v = svcmpge(pg, ma, pio2_v); //Rebase a between 0 and pi/2 ma = svsel(reb_v, svsub_z(pg, pi_v, ma), ma); //Taylor series const auto ma2 = svmul_z(pg, ma, ma); //2nd elem: x^3 / 3! auto elem = svmul_z(pg, svmul_z(pg, ma, ma2), wrapper::svdup_n(ScalarType(te_sin_coeff2))); auto res = svsub_z(pg, ma, elem); //3rd elem: x^5 / 5! elem = svmul_z(pg, svmul_z(pg, elem, ma2), wrapper::svdup_n(ScalarType(te_sin_coeff3))); res = svadd_z(pg, res, elem); //4th elem: x^7 / 7!float32x2_t vsin_f32(float32x2_t val) elem = svmul_z(pg, svmul_z(pg, elem, ma2), wrapper::svdup_n(ScalarType(te_sin_coeff4))); res = svsub_z(pg, res, elem); //5th elem: x^9 / 9! elem = svmul_z(pg, svmul_z(pg, elem, ma2), wrapper::svdup_n(ScalarType(te_sin_coeff5))); res = svadd_z(pg, res, elem); //Change of sign res = svneg_m(res, neg_v, res); return res; } inline svfloat16_t svsin_f16_z(svbool_t pg, svfloat16_t val) { auto bottom = svcvt_f32_z(pg, val); auto pg_top = svptrue_b16(); auto top = svcvt_f32_z(pg_top, svreinterpret_f16(svrevh_z(svptrue_b16(), svreinterpret_u32(val)))); bottom = svsin_f32_z(pg, bottom); top = svsin_f32_z(pg_top, top); return svtrn1(svcvt_f16_z(pg, bottom), svcvt_f16_z(pg_top, top)); } #ifdef ARM_COMPUTE_ENABLE_SVE2 inline svfloat16_t svsin_f16_z_sve2(svbool_t pg, svfloat16_t val) { auto bottom = svcvt_f32_z(pg, val); auto top = svcvtlt_f32_x(pg, val); auto pg_top = pg; bottom = svsin_f32_z(pg, bottom); top = svsin_f32_z(pg_top, top); return svcvtnt_f16_m(svcvt_f16_z(pg, bottom), pg_top, top); } #endif // ARM_COMPUTE_ENABLE_SVE2 inline svfloat32_t svpow_f32_z(svbool_t pg, svfloat32_t a, svfloat32_t b) { return svexp_f32_z(pg, svmul_z(pg, b, svlog_f32_z(pg, a))); } inline svfloat16_t svpow_f16_z(svbool_t pg, svfloat16_t a, svfloat16_t b) { auto a_bottom = svcvt_f32_z(pg, a); auto b_bottom = svcvt_f32_z(pg, b); auto pg_top = svptrue_b16(); auto a_top = svcvt_f32_z(pg_top, svreinterpret_f16(svrevh_z(svptrue_b16(), svreinterpret_u32(a)))); auto b_top = svcvt_f32_z(pg_top, svreinterpret_f16(svrevh_z(svptrue_b16(), svreinterpret_u32(b)))); auto res_bottom = svpow_f32_z(pg, a_bottom, b_bottom); auto res_top = svpow_f32_z(pg_top, a_top, b_top); return svtrn1(svcvt_f16_z(pg, res_bottom), svcvt_f16_z(pg_top, res_top)); } #ifdef ARM_COMPUTE_ENABLE_SVE2 inline svfloat16_t svpow_f16_z_sve2(svbool_t pg, svfloat16_t a, svfloat16_t b) { auto a_bottom = svcvt_f32_z(pg, a); auto b_bottom = svcvt_f32_z(pg, b); auto pg_top = pg; auto a_top = svcvtlt_f32_x(pg, a); auto b_top = svcvtlt_f32_x(pg, b); auto res_bottom = svpow_f32_z(pg, a_bottom, b_bottom); auto res_top = svpow_f32_z(pg_top, a_top, b_top); return svcvtnt_f16_m(svcvt_f16_z(pg, res_bottom), pg_top, res_top); } #endif // ARM_COMPUTE_ENABLE_SVE2 #if defined(ARM_COMPUTE_ENABLE_SVE2) template <> inline svuint8_t convert_float_to_int(const svfloat32_t &in_0, const svfloat32_t &in_1, const svfloat32_t &in_2, const svfloat32_t &in_3) { svuint8_t out; const auto all_true_pg = svptrue_b32(); auto tmp_0 = svcvt_u32_f32_z(all_true_pg, in_0); auto tmp_1 = svcvt_u32_f32_z(all_true_pg, in_1); auto tmp_2 = svcvt_u32_f32_z(all_true_pg, in_2); auto tmp_3 = svcvt_u32_f32_z(all_true_pg, in_3); auto tmp_16_0 = svqxtnt_u32(svqxtnb_u32(tmp_0), tmp_1); auto tmp_16_1 = svqxtnt_u32(svqxtnb_u32(tmp_2), tmp_3); auto tmp_16_uzp_0 = svuzp1(tmp_16_0, tmp_16_0); auto tmp_16_uzp_1 = svuzp2(tmp_16_0, tmp_16_0); auto tmp_16_uzp_2 = svuzp1(tmp_16_1, tmp_16_1); auto tmp_16_uzp_3 = svuzp2(tmp_16_1, tmp_16_1); auto pg = svwhilelt_b16_s32(0, svcnth() / 2); tmp_16_0 = svsplice(pg, tmp_16_uzp_0, tmp_16_uzp_1); tmp_16_1 = svsplice(pg, tmp_16_uzp_2, tmp_16_uzp_3); out = svqxtnt_u16(svqxtnb_u16(tmp_16_0), tmp_16_1); auto out_uzp_0 = svuzp1(out, out); auto out_uzp_1 = svuzp2(out, out); pg = svwhilelt_b8_s32(0, svcntb() / 2); out = svsplice(pg, out_uzp_0, out_uzp_1); return out; } template <> inline svint8_t convert_float_to_int(const svfloat32_t &in_0, const svfloat32_t &in_1, const svfloat32_t &in_2, const svfloat32_t &in_3) { svint8_t out; const auto all_true_pg = svptrue_b32(); auto tmp_0 = svcvt_s32_f32_z(all_true_pg, in_0); auto tmp_1 = svcvt_s32_f32_z(all_true_pg, in_1); auto tmp_2 = svcvt_s32_f32_z(all_true_pg, in_2); auto tmp_3 = svcvt_s32_f32_z(all_true_pg, in_3); auto tmp_16_0 = svqxtnt_s32(svqxtnb_s32(tmp_0), tmp_1); auto tmp_16_1 = svqxtnt_s32(svqxtnb_s32(tmp_2), tmp_3); auto tmp_16_uzp_0 = svuzp1(tmp_16_0, tmp_16_0); auto tmp_16_uzp_1 = svuzp2(tmp_16_0, tmp_16_0); auto tmp_16_uzp_2 = svuzp1(tmp_16_1, tmp_16_1); auto tmp_16_uzp_3 = svuzp2(tmp_16_1, tmp_16_1); auto pg = svwhilelt_b16_s32(0, svcnth() / 2); tmp_16_0 = svsplice(pg, tmp_16_uzp_0, tmp_16_uzp_1); tmp_16_1 = svsplice(pg, tmp_16_uzp_2, tmp_16_uzp_3); out = svqxtnt_s16(svqxtnb_s16(tmp_16_0), tmp_16_1); auto out_uzp_0 = svuzp1(out, out); auto out_uzp_1 = svuzp2(out, out); pg = svwhilelt_b8_s32(0, svcntb() / 2); out = svsplice(pg, out_uzp_0, out_uzp_1); return out; } #endif /* defined(ARM_COMPUTE_ENABLE_SVE2) */ } // namespace arm_compute #endif /* defined(ARM_COMPUTE_ENABLE_SVE) */ #endif // ACL_SRC_CORE_NEON_SVEMATH_INL