/* * Copyright (c) 2016-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/Helpers.h" using namespace arm_compute; Window arm_compute::calculate_max_window(const ValidRegion &valid_region, const Steps &steps, bool skip_border, BorderSize border_size) { if(!skip_border) { border_size = BorderSize(0); } const Coordinates &anchor = valid_region.anchor; const TensorShape &shape = valid_region.shape; Window window; window.set(0, Window::Dimension( // Skip the border left of the image anchor[0] + border_size.left, // Skip the border right of the image // Make sure the window width is a multiple of the step size anchor[0] + border_size.left + ceil_to_multiple(std::max(0, static_cast(shape[0]) - static_cast(border_size.left) - static_cast(border_size.right)), steps[0]), steps[0])); size_t n = 1; if(anchor.num_dimensions() > 1) { window.set(1, Window::Dimension( // Skip the border above the image anchor[1] + border_size.top, // Skip the border below the image anchor[1] + border_size.top + ceil_to_multiple(std::max(0, static_cast(shape[1]) - static_cast(border_size.top) - static_cast(border_size.bottom)), steps[1]), steps[1])); ++n; } if(anchor.num_dimensions() > 2) { window.set(2, Window::Dimension(anchor[2], std::max(1, shape[2]), steps[2])); ++n; } for(; n < anchor.num_dimensions(); ++n) { window.set(n, Window::Dimension(anchor[n], std::max(1, shape[n]))); } for(; n < Coordinates::num_max_dimensions; ++n) { window.set(n, Window::Dimension(0, 1)); } return window; } Window arm_compute::calculate_max_enlarged_window(const ValidRegion &valid_region, const Steps &steps, BorderSize border_size) { const Coordinates &anchor = valid_region.anchor; const TensorShape &shape = valid_region.shape; Window window; window.set(0, Window::Dimension( // move the anchor to the start from the border anchor[0] - border_size.left, // move the anchor to include the right end border // Make sure the window width is a multiple of the step size anchor[0] - border_size.left + ceil_to_multiple(shape[0] + border_size.left + border_size.right, steps[0]), steps[0])); size_t n = 1; if(anchor.num_dimensions() > 1) { window.set(1, Window::Dimension( // Include the border above the image anchor[1] - border_size.top, // Include the border below the image anchor[1] - border_size.top + ceil_to_multiple(shape[1] + border_size.top + border_size.bottom, steps[1]), steps[1])); ++n; } if(anchor.num_dimensions() > 2) { window.set(2, Window::Dimension(0, std::max(1, shape[n]), steps[2])); ++n; } for(; n < anchor.num_dimensions(); ++n) { window.set(n, Window::Dimension(anchor[n], std::max(1, shape[n]))); } for(; n < Coordinates::num_max_dimensions; ++n) { window.set(n, Window::Dimension(0, 1)); } return window; } Window arm_compute::calculate_max_window_horizontal(const ValidRegion &valid_region, const Steps &steps, bool skip_border, BorderSize border_size) { if(skip_border) { border_size.top = 0; border_size.bottom = 0; } else { border_size.left = 0; border_size.right = 0; } const Coordinates &anchor = valid_region.anchor; const TensorShape &shape = valid_region.shape; Window window; window.set(0, Window::Dimension( // Skip the border left of the image anchor[0] + border_size.left, // Skip the border right of the image // Make sure the window width is a multiple of the step size anchor[0] + border_size.left + ceil_to_multiple(std::max(0, static_cast(shape[0]) - static_cast(border_size.left) - static_cast(border_size.right)), steps[0]), steps[0])); size_t n = 1; if(anchor.num_dimensions() > 1) { window.set(1, Window::Dimension( // Skip the border above the image anchor[1] - border_size.top, // Skip the border below the image anchor[1] + shape[1] + border_size.bottom, 1)); ++n; } for(; n < anchor.num_dimensions(); ++n) { window.set(n, Window::Dimension(anchor[n], std::max(1, shape[n]))); } for(; n < Coordinates::num_max_dimensions; ++n) { window.set(n, Window::Dimension(0, 1)); } return window; } ValidRegion arm_compute::calculate_valid_region_scale(const ITensorInfo &src_info, const TensorShape &dst_shape, InterpolationPolicy interpolate_policy, SamplingPolicy sampling_policy, bool border_undefined) { const DataLayout data_layout = src_info.data_layout(); const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); const float scale_x = static_cast(dst_shape[idx_width]) / src_info.tensor_shape()[idx_width]; const float scale_y = static_cast(dst_shape[idx_height]) / src_info.tensor_shape()[idx_height]; const float sampling_point = (sampling_policy == SamplingPolicy::CENTER) ? 0.5f : 0.0f; // Get input's valid region start and end points const int valid_start_in_x = src_info.valid_region().anchor[idx_width]; const int valid_start_in_y = src_info.valid_region().anchor[idx_height]; const int valid_end_in_x = src_info.valid_region().anchor[idx_width] + src_info.valid_region().shape[idx_width]; const int valid_end_in_y = src_info.valid_region().anchor[idx_height] + src_info.valid_region().shape[idx_height]; // Initialize output's valid region start and end points auto valid_start_out_x = static_cast(valid_start_in_x * scale_x); auto valid_start_out_y = static_cast(valid_start_in_y * scale_y); auto valid_end_out_x = std::min(std::ceil(valid_end_in_x * scale_x), dst_shape[idx_width]); auto valid_end_out_y = std::min(std::ceil(valid_end_in_y * scale_y), dst_shape[idx_height]); // Handle valid points in case of the bi-linear interpolation if(border_undefined) { switch(interpolate_policy) { case InterpolationPolicy::NEAREST_NEIGHBOR: { // (start_out + sampling_point) >= (start_in * scale) // start_out = ceil((start_in * scale) - sampling_point) valid_start_out_x = std::ceil(valid_start_in_x * scale_x - sampling_point); valid_start_out_y = std::ceil(valid_start_in_y * scale_y - sampling_point); // (end_out - 1 + sampling_point) < (end_in * scale) // end_out = ceil((end_in * scale) - sampling_point); // <-- ceil(x - 1) strictly less valid_end_out_x = std::ceil(valid_end_in_x * scale_x - sampling_point); valid_end_out_y = std::ceil(valid_end_in_y * scale_y - sampling_point); break; } case InterpolationPolicy::BILINEAR: { // (start_out + sampling_point) >= ((start_in + sampling_point) * scale) // start_out = ceil(((start_in + sampling_point) * scale) - sampling_point) valid_start_out_x = std::ceil((valid_start_in_x + sampling_point) * scale_x - sampling_point); valid_start_out_y = std::ceil((valid_start_in_y + sampling_point) * scale_y - sampling_point); // (end_out - 1 + sampling_point) <= ((end_in - 1 + sampling_point) * scale) // end_out = floor(((end_in - 1 + sampling_point) * scale) - sampling_point + 1) valid_end_out_x = std::floor((valid_end_in_x - 1.f + sampling_point) * scale_x - sampling_point + 1.f); valid_end_out_y = std::floor((valid_end_in_y - 1.f + sampling_point) * scale_y - sampling_point + 1.f); break; } case InterpolationPolicy::AREA: break; default: { ARM_COMPUTE_ERROR("Invalid InterpolationPolicy"); break; } } } // Setup output valid region ValidRegion valid_region{ Coordinates(), dst_shape, src_info.tensor_shape().num_dimensions() }; valid_region.anchor.set(idx_width, std::max(0, valid_start_out_x)); valid_region.anchor.set(idx_height, std::max(0, valid_start_out_y)); valid_region.shape.set(idx_width, std::min(valid_end_out_x - valid_start_out_x, dst_shape[idx_width])); valid_region.shape.set(idx_height, std::min(valid_end_out_y - valid_start_out_y, dst_shape[idx_height])); return valid_region; }