/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/GLES_COMPUTE/kernels/GCPoolingLayerKernel.h" #include "arm_compute/core/AccessWindowStatic.h" #include "arm_compute/core/GLES_COMPUTE/GCHelpers.h" #include "arm_compute/core/GLES_COMPUTE/GCKernelLibrary.h" #include "arm_compute/core/GLES_COMPUTE/IGCTensor.h" #include "arm_compute/core/GLES_COMPUTE/OpenGLES.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include #include #include using namespace arm_compute; GCPoolingLayerKernel::GCPoolingLayerKernel() : _input(nullptr), _output(nullptr), _pool_info(), _border_size(0), _num_elems_processed_per_iteration(1) { } BorderSize GCPoolingLayerKernel::border_size() const { return _border_size; } void GCPoolingLayerKernel::configure(const IGCTensor *input, IGCTensor *output, const PoolingLayerInfo &pool_info) { int pool_pad_x = 0; int pool_pad_y = 0; int pool_stride_x = 0; int pool_stride_y = 0; unsigned int pooled_w = 0; unsigned int pooled_h = 0; const PoolingType pool_type = pool_info.pool_type(); int pool_size = pool_info.pool_size(); const PadStrideInfo pad_stride_info = pool_info.pad_stride_info(); const bool is_global_pooling = pool_info.is_global_pooling(); std::tie(pool_pad_x, pool_pad_y) = pad_stride_info.pad(); std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride(); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32); ARM_COMPUTE_ERROR_ON_NULLPTR(output); ARM_COMPUTE_ERROR_ON(!is_global_pooling && (pool_pad_x >= pool_size || pool_pad_y >= pool_size)); ARM_COMPUTE_ERROR_ON(is_global_pooling && (input->info()->tensor_shape().x() != input->info()->tensor_shape().y())); // Update pool size in case of global pooling pool_size = is_global_pooling ? input->info()->dimension(0) : pool_size; // Check output dimensions std::tie(pooled_w, pooled_h) = scaled_dimensions(input->info()->dimension(0), input->info()->dimension(1), pool_size, pool_size, pool_info.pad_stride_info()); // Output auto initialization if not yet initialized { TensorShape output_shape{ input->info()->tensor_shape() }; output_shape.set(0, pooled_w); output_shape.set(1, pooled_h); auto_init_if_empty(*output->info(), output_shape, 1, input->info()->data_type(), input->info()->fixed_point_position()); } ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); ARM_COMPUTE_ERROR_ON((output->info()->dimension(0) != pooled_w) || (output->info()->dimension(1) != pooled_h)); const int input_width = input->info()->dimension(0); const int input_height = input->info()->dimension(1); // Set instance variables _input = input; _output = output; _pool_info = pool_info; _border_size = BorderSize(pool_pad_y, pool_pad_x); // Set build options std::set build_opts; build_opts.emplace("#define LOCAL_SIZE_X " + support::cpp11::to_string(1)); build_opts.emplace("#define LOCAL_SIZE_Y " + support::cpp11::to_string(1)); build_opts.emplace("#define LOCAL_SIZE_Z " + support::cpp11::to_string(1)); if(input->info()->data_type() == DataType::F32) { build_opts.insert("#define DATA_TYPE_FP32"); } else { build_opts.insert("#define DATA_TYPE_FP16"); } build_opts.emplace(("#define POOL_" + string_from_pooling_type(pool_type))); build_opts.emplace(("#define STRIDE_X " + support::cpp11::to_string(pool_stride_x))); build_opts.emplace(("#define MAX_WIDTH " + support::cpp11::to_string(input->info()->dimension(0) + pool_pad_x))); build_opts.emplace(("#define MAX_HEIGHT " + support::cpp11::to_string(input->info()->dimension(1) + pool_pad_y))); build_opts.emplace(("#define STRIDE_Y " + support::cpp11::to_string(pool_stride_y))); build_opts.emplace(("#define PAD_X " + support::cpp11::to_string(pool_pad_x))); build_opts.emplace(("#define PAD_Y " + support::cpp11::to_string(pool_pad_y))); // Create kernel if((pool_size == 2) || (pool_size == 3) || (pool_size == 7)) { // Check if we have pool3x3 with stride_x less equal than 3. In these cases, run an optimized OpenGLES kernel where // each thread computes 4 output elements const bool is_pool3x3_stride_le3 = (pool_size == 3) && (pool_stride_x <= 3) && !is_data_type_fixed_point(input->info()->data_type()); int num_elements_read_per_iteration = (pool_size == 7) ? 8 : pool_size; if(input->info()->data_type() == DataType::F32) { if(is_pool3x3_stride_le3) { // Change the number of elements processed and number of elements read per iteration for pooling 3x3 with stride less equal than 3 _num_elems_processed_per_iteration = 4; num_elements_read_per_iteration = pool_size * (pool_stride_x + 1); } } else { num_elements_read_per_iteration = pool_size; if(is_pool3x3_stride_le3) { _num_elems_processed_per_iteration = 4; } else { _num_elems_processed_per_iteration = 2; } } const int upper_bound_w = ((pooled_w - 1) * pool_stride_x - pool_pad_x + num_elements_read_per_iteration) - input_width; const int upper_bound_h = ((pooled_h - 1) * pool_stride_y - pool_pad_y + pool_size) - input_height; _border_size.right = std::max(upper_bound_w, pool_pad_x); _border_size.bottom = std::max(upper_bound_h, pool_pad_y); std::string kernel_name = "pooling_layer_" + support::cpp11::to_string(pool_size); if(is_pool3x3_stride_le3) { build_opts.insert("#define POOLING_LAYER_3_OPTIMIZED"); _kernel = static_cast(GCKernelLibrary::get().create_kernel(kernel_name + "_optimized", build_opts)); } else { build_opts.insert("#define POOLING_LAYER_" + support::cpp11::to_string(pool_size)); _kernel = static_cast(GCKernelLibrary::get().create_kernel(kernel_name, build_opts)); } } else // Run general case { if(input->info()->data_type() == DataType::F32) { _num_elems_processed_per_iteration = 1; } else { _num_elems_processed_per_iteration = 2; } const int upper_bound_w = ((pooled_w - 1) * pool_stride_x - pool_pad_x + pool_size) - input_width; const int upper_bound_h = ((pooled_h - 1) * pool_stride_y - pool_pad_y + pool_size) - input_height; _border_size.right = std::max(upper_bound_w, pool_pad_x); _border_size.bottom = std::max(upper_bound_h, pool_pad_y); build_opts.emplace(("#define POOL_SIZE " + support::cpp11::to_string(pool_size))); build_opts.insert("#define POOLING_LAYER_N"); _kernel = static_cast(GCKernelLibrary::get().create_kernel("pooling_layer_n", build_opts)); } Window win = calculate_max_window(*output->info(), Steps(_num_elems_processed_per_iteration)); if(input->info()->data_type() == DataType::F32) { AccessWindowStatic input_access(input->info(), -pool_pad_x, -pool_pad_y, input_width + _border_size.right, input_height + _border_size.bottom); AccessWindowHorizontal output_access(output->info(), 0, _num_elems_processed_per_iteration); update_window_and_padding(win, input_access, output_access); output_access.set_valid_region(win, ValidRegion(Coordinates(), output->info()->tensor_shape())); } else { // Calculate output right and bottom border const int output_width = output->info()->dimension(0); const int output_height = output->info()->dimension(1); const int output_padding_right = ceil_to_multiple(output_width, _num_elems_processed_per_iteration) - output_width; const int output_padding_bottom = ceil_to_multiple(output_height, 1) - output_height; const int input_padding_right = ceil_to_multiple(input_width + 2 * _border_size.right, _num_elems_processed_per_iteration) - (input_width + 2 * _border_size.right); const int input_padding_bottom = ceil_to_multiple(input_height + 2 * _border_size.bottom, 1) - (input_height + 2 * _border_size.bottom); // Configure kernel window AccessWindowStatic input_access(input->info(), -pool_pad_x, -pool_pad_y, input_width + _border_size.right + input_padding_right, input_height + _border_size.bottom + input_padding_bottom); AccessWindowStatic output_access(output->info(), 0, 0, output_width + output_padding_right, output_height + output_padding_bottom); update_window_and_padding(win, input_access, output_access); output_access.set_valid_region(win, ValidRegion(Coordinates(), output->info()->tensor_shape())); } IGCKernel::configure(win); } void GCPoolingLayerKernel::run(const Window &window) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window); unsigned int pool_pad_x, pool_pad_y, pool_stride_x, pool_stride_y = 0; std::tie(pool_pad_x, pool_pad_y) = _pool_info.pad_stride_info().pad(); std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info().stride(); _kernel.use(); Window window_collapsed = window.collapse_if_possible(IGCKernel::window(), Window::DimZ); Window slice = window_collapsed.first_slice_window_3D(); do { // Upsample input by pool size Window in_slice(slice); in_slice.set(Window::DimX, Window::Dimension(in_slice.x().start() - pool_pad_x, in_slice.x().end() * pool_stride_x, pool_stride_x * _num_elems_processed_per_iteration)); in_slice.set(Window::DimY, Window::Dimension(in_slice.y().start() - pool_pad_y, in_slice.y().end() * pool_stride_y, pool_stride_y)); // Set inputs unsigned int idx = 0; add_3D_tensor_argument(idx, _input, 1, in_slice); add_3D_tensor_argument(idx, _output, 2, slice); _kernel.update_shader_params(); enqueue(*this, slice); } while(window_collapsed.slide_window_slice_3D(slice)); }