/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/GLES_COMPUTE/kernels/GCGEMMMatrixMultiplyKernel.h" #include "arm_compute/core/AccessWindowStatic.h" #include "arm_compute/core/AccessWindowTranspose.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/GLES_COMPUTE/GCHelpers.h" #include "arm_compute/core/GLES_COMPUTE/GCKernelLibrary.h" #include "arm_compute/core/GLES_COMPUTE/IGCTensor.h" #include "arm_compute/core/GLES_COMPUTE/OpenGLES.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/TensorInfo.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include #include using namespace arm_compute; using namespace arm_compute::misc::shape_calculator; namespace { using ElementsProcessed = Steps; inline Status validate_arguments(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output, bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info) { ARM_COMPUTE_UNUSED(reshape_info); ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input0, input1, output); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input0, 1, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, input1); ARM_COMPUTE_RETURN_ERROR_ON_MSG(input1->num_dimensions() > 3, "The number of dimensions for the matrix B must be <= 3"); if(!is_interleaved_transposed) { ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(0) != input1->dimension(1)); if(output->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON(input1->dimension(0) != output->dimension(0)); ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(1) != output->dimension(1)); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, output); } } else { const int m = reshape_info.m(); const int n = reshape_info.n(); const int k = reshape_info.k(); const int mult_transpose1xW_width = reshape_info.mult_transpose1xW_width(); const int mult_interleave4x4_height = reshape_info.mult_interleave4x4_height(); TensorShape tensor_shape0{ input0->tensor_shape() }; tensor_shape0.set(0, k); tensor_shape0.set(1, m); TensorShape tensor_shape1{ input1->tensor_shape() }; tensor_shape1.set(0, n); tensor_shape1.set(1, k); const TensorInfo tensor_info0 = input0->clone()->set_tensor_shape(tensor_shape0); const TensorInfo tensor_info1 = input1->clone()->set_tensor_shape(tensor_shape1); const TensorInfo tensor_info_reshaped0 = input0->clone()->set_tensor_shape(compute_interleaved_shape(tensor_info0, mult_interleave4x4_height)); const TensorInfo tensor_info_reshaped1 = input1->clone()->set_tensor_shape(compute_transpose1xW_with_element_size_shape(tensor_info1, mult_transpose1xW_width)); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input0, &tensor_info_reshaped0); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input1, &tensor_info_reshaped1); if(output->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON(output->dimension(0) != static_cast(n)); ARM_COMPUTE_RETURN_ERROR_ON(output->dimension(1) != static_cast(m)); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, output); } } return Status{}; } inline std::pair validate_and_configure_window(ITensorInfo *input0, ITensorInfo *input1, ITensorInfo *output, bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info, GPUTarget gpu_target, ElementsProcessed &num_elements_processed) { ARM_COMPUTE_UNUSED(gpu_target); // Output tensor auto inizialitation if not yet initialized TensorShape tensor_shape{ input0->tensor_shape() }; tensor_shape.set(0, is_interleaved_transposed ? reshape_info.n() : input1->dimension(0)); tensor_shape.set(1, is_interleaved_transposed ? reshape_info.m() : input0->dimension(1)); auto_init_if_empty(*output, input0->clone()->set_tensor_shape(tensor_shape)); bool window_changed = false; Window win{}; const DataType data_type = input0->data_type(); unsigned int &num_elems_processed_per_iteration_x = num_elements_processed[0]; unsigned int &num_elems_processed_per_iteration_y = num_elements_processed[1]; if(is_interleaved_transposed) { // Configure window kernel num_elems_processed_per_iteration_x = max_gc_vector_width / data_size_from_type(data_type); num_elems_processed_per_iteration_y = 4; win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y)); AccessWindowRectangle input0_access(input0, 0, 0, num_elems_processed_per_iteration_y, 1, 1.f, 0.25f); AccessWindowTranspose input1_access(input1, 0, 0, num_elems_processed_per_iteration_x, 1, 0.f, 0.25f); AccessWindowRectangle output_access(output, 0, 0, num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y); update_window_and_padding(win, input0_access, input1_access, output_access); output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape())); } else // The input tensors have not been reshaped { // Special case for 1xN, 2xN, 3xN and 4xN input0 tensor. num_elems_processed_per_iteration_y = std::min(static_cast(output->dimension(1)), 4); switch(data_type) { case DataType::F16: num_elems_processed_per_iteration_x = 4; break; case DataType::F32: num_elems_processed_per_iteration_x = max_gc_vector_width / data_size_from_type(data_type); break; default: ARM_COMPUTE_ERROR("Current data type is not supported"); break; } win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y)); AccessWindowStatic input0_access(input0, 0, 0, ceil_to_multiple(input0->dimension(0), 8), ceil_to_multiple(input0->dimension(1), num_elems_processed_per_iteration_y)); AccessWindowStatic input1_access(input1, 0, 0, ceil_to_multiple(input1->dimension(0), num_elems_processed_per_iteration_x), input1->dimension(1)); AccessWindowRectangle output_access(output, 0, 0, num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y); update_window_and_padding(win, input0_access, input1_access, output_access); Coordinates coord; coord.set_num_dimensions(output->num_dimensions()); output_access.set_valid_region(win, ValidRegion(coord, output->tensor_shape())); } Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, win); } } // namespace GCGEMMMatrixMultiplyKernel::GCGEMMMatrixMultiplyKernel() : _input0(nullptr), _input1(nullptr), _output(nullptr) { } void GCGEMMMatrixMultiplyKernel::configure(const IGCTensor *input0, const IGCTensor *input1, IGCTensor *output, float alpha, bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(input0, input1, output); // Perform validate step ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input0->info(), input1->info(), output->info(), is_interleaved_transposed, reshape_info)); _input0 = input0; _input1 = input1; _output = output; // Get target architecture GPUTarget gpu_target = get_target(); ElementsProcessed num_elements_processed{}; // Configure kernel window auto win_config = validate_and_configure_window(input0->info(), input1->info(), output->info(), is_interleaved_transposed, reshape_info, gpu_target, num_elements_processed); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); IGCKernel::configure(win_config.second); // Create build options std::set build_opts; std::string kernel_name; build_opts.emplace("#define LOCAL_SIZE_X " + support::cpp11::to_string(1)); build_opts.emplace("#define LOCAL_SIZE_Y " + support::cpp11::to_string(1)); build_opts.emplace("#define LOCAL_SIZE_Z " + support::cpp11::to_string(1)); build_opts.emplace("#define COLS_A " + support::cpp11::to_string(input0->info()->dimension(0))); build_opts.emplace("#define COLS_B " + support::cpp11::to_string(input1->info()->dimension(0))); build_opts.emplace("#define ALPHA " + float_to_string_with_full_precision(alpha)); // Check if the output tensor is a vector. If so,the kernel runs the vector-matrix multiplication if(is_interleaved_transposed) { const int mult_transpose1xW_width = reshape_info.mult_transpose1xW_width(); const int mult_interleave4x4_height = reshape_info.mult_interleave4x4_height(); build_opts.emplace("#define MULT_TRANSPOSE1XW_WIDTH " + support::cpp11::to_string(mult_transpose1xW_width)); build_opts.emplace("#define MULT_INTERLEAVE4X4_HEIGHT " + support::cpp11::to_string(mult_interleave4x4_height)); switch(input0->info()->data_type()) { case DataType::F16: build_opts.emplace("#define DATA_TYPE_FP16"); break; case DataType::F32: build_opts.emplace("#define DATA_TYPE_FP32"); break; default: ARM_COMPUTE_ERROR("Current data type is not supported"); break; } build_opts.emplace("#define GEMM_MM_INTERLEAVED_TRANSPOSED"); kernel_name = "gemm_mm_interleaved_transposed"; } else { // Special case for 1xN, 2xN, 3xN and 4xN input0 tensor GPUTarget arch_target = get_arch_from_target(gpu_target); switch(input0->info()->data_type()) { case DataType::F16: build_opts.emplace("#define DATA_TYPE_FP16"); build_opts.emplace("#define MM_PROCESS_4X_OPTIMIZED"); build_opts.emplace("#define GEMM_MM_FLOATING_POINT"); break; case DataType::F32: build_opts.emplace("#define DATA_TYPE_FP32"); if(arch_target == GPUTarget::BIFROST && input0->info()->num_dimensions() != 1) { build_opts.emplace("#define GEMM_MM_FLOATING_POINT_BIFROST"); } else { build_opts.emplace("#define GEMM_MM_FLOATING_POINT"); } break; default: ARM_COMPUTE_ERROR("Current data type is not supported"); break; } build_opts.emplace("#define NUM_ELEMS_PROCESSED_PER_THREAD_X " + support::cpp11::to_string(num_elements_processed.x())); build_opts.emplace("#define NUM_ELEMS_PROCESSED_PER_THREAD_Y " + support::cpp11::to_string(num_elements_processed.y())); kernel_name = "gemm_mm_floating_point"; } // Create kernel _kernel = GCKernelLibrary::get().create_kernel(kernel_name, build_opts); } Status GCGEMMMatrixMultiplyKernel::validate(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output, float alpha, bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info, GPUTarget gpu_target) { ARM_COMPUTE_UNUSED(alpha); ElementsProcessed num_elements_processed{}; ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input0, input1, output, is_interleaved_transposed, reshape_info)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input0->clone().get(), input1->clone().get(), output->clone().get(), is_interleaved_transposed, reshape_info, gpu_target, num_elements_processed) .first); return Status{}; } void GCGEMMMatrixMultiplyKernel::run(const Window &window) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IGCKernel::window(), window); _kernel.use(); Window slice = window.first_slice_window_2D(); Window slice_matrix_b = slice; slice_matrix_b.set(Window::DimX, Window::Dimension(0, 1, 1)); slice_matrix_b.set(Window::DimY, Window::Dimension(0, 1, 1)); do { Window slice_b = slice; // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2 // This scenario can happen when the the matrix multiplication is used to perform a convolution operation if(_input1->info()->num_dimensions() < 3) { slice_b = slice_matrix_b; } unsigned int idx = 0; add_2D_tensor_argument(idx, _input0, 1, slice); add_2D_tensor_argument(idx, _input1, 2, slice_b); add_2D_tensor_argument(idx, _output, 3, slice); _kernel.update_shader_params(); enqueue(*this, slice); } while(window.slide_window_slice_2D(slice)); }