/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/GLES_COMPUTE/kernels/GCDirectConvolutionLayerKernel.h" #include "arm_compute/core/AccessWindowStatic.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/GLES_COMPUTE/GCHelpers.h" #include "arm_compute/core/GLES_COMPUTE/GCKernelLibrary.h" #include "arm_compute/core/GLES_COMPUTE/IGCTensor.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/IAccessWindow.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Validate.h" #include "support/ToolchainSupport.h" using namespace arm_compute; template GCDirectConvolutionLayerKernel::GCDirectConvolutionLayerKernel() : _input(nullptr), _bias(nullptr), _weights(nullptr), _output(nullptr), _border_size(0), _conv_stride_x(0), _conv_stride_y(0), _conv_pad_x(0), _conv_pad_y(0), _lws(gles::NDRange(1U, 1U, 1U)) { } template BorderSize GCDirectConvolutionLayerKernel::border_size() const { return _border_size; } template void GCDirectConvolutionLayerKernel::configure(const IGCTensor *input, const IGCTensor *weights, const IGCTensor *bias, IGCTensor *output, const PadStrideInfo &conv_info, const ActivationLayerInfo &act_info) { ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32); ARM_COMPUTE_ERROR_ON(weights->info()->dimension(2) != input->info()->dimension(2)); ARM_COMPUTE_ERROR_ON(weights->info()->dimension(0) != weights->info()->dimension(1)); ARM_COMPUTE_ERROR_ON(weights->info()->num_dimensions() > 4); ARM_COMPUTE_ERROR_ON_MSG((kernel_size == 3 && std::get<0>(conv_info.stride()) > 2), "Strides larger than 2 not supported in 3x3 direct convolution!"); ARM_COMPUTE_ERROR_ON(kernel_size != weights->info()->dimension(0)); ARM_COMPUTE_ERROR_ON(act_info.enabled() && act_info.activation() != ActivationLayerInfo::ActivationFunction::RELU && act_info.activation() != ActivationLayerInfo::ActivationFunction::LOGISTIC); if(bias != nullptr) { ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(weights, bias); // FIXME: Bug in framework, workaround it in tests currently. //ARM_COMPUTE_ERROR_ON(bias->info()->dimension(0) != weights->info()->dimension(3)); ARM_COMPUTE_ERROR_ON(bias->info()->num_dimensions() > 1); } // Get convolved dimensions unsigned int owidth = 0; unsigned int oheight = 0; std::tie(owidth, oheight) = scaled_dimensions(input->info()->dimension(0), input->info()->dimension(1), kernel_size, kernel_size, conv_info); TensorShape output_shape = input->info()->tensor_shape(); output_shape.set(0, owidth); output_shape.set(1, oheight); output_shape.set(2, weights->info()->dimension(3)); // Output auto inizialitation if not yet initialized auto_init_if_empty(*output->info(), output_shape, 1, input->info()->data_type()); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights, output); ARM_COMPUTE_ERROR_ON_MISMATCHING_DIMENSIONS(output->info()->tensor_shape(), output_shape); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); ARM_COMPUTE_ERROR_ON(!conv_info.padding_is_symmetric()); _conv_stride_x = std::get<0>(conv_info.stride()); _conv_stride_y = std::get<1>(conv_info.stride()); _conv_pad_x = std::get<0>(conv_info.pad()); _conv_pad_y = std::get<1>(conv_info.pad()); _input = input; _weights = weights; _output = output; _bias = bias; _border_size = BorderSize(_conv_pad_y, _conv_pad_x); std::set options; options.emplace("#define LOCAL_SIZE_X " + support::cpp11::to_string(_lws[0])); options.emplace("#define LOCAL_SIZE_Y " + support::cpp11::to_string(_lws[1])); options.emplace("#define LOCAL_SIZE_Z " + support::cpp11::to_string(_lws[2])); options.emplace("#define STRIDE_X " + support::cpp11::to_string(_conv_stride_x)); options.emplace("#define STRIDE_Y " + support::cpp11::to_string(_conv_stride_y)); std::string dt_name = (input->info()->data_type() == DataType::F32) ? "DATA_TYPE_FP32" : "DATA_TYPE_FP16"; options.emplace(("#define " + dt_name)); // Activation information in case of a fused activation if(act_info.enabled()) { options.emplace("#define FUSED_ACTIVATION"); options.emplace(("#define " + string_from_activation_func(act_info.activation()))); options.emplace(("#define ACT_OP " + lower_string(string_from_activation_func(act_info.activation())) + "_op")); options.emplace(("#define A_VAL " + float_to_string_with_full_precision(act_info.a()))); options.emplace(("#define B_VAL " + float_to_string_with_full_precision(act_info.b()))); } unsigned int num_elems_read_per_iteration_x = kernel_size * _conv_stride_x; unsigned int num_elems_read_per_iteration_y = 1; unsigned int num_elems_written_per_iteration_x = 1; unsigned int num_elems_written_per_iteration_y = 1; unsigned int num_elems_written_per_iteration_z = 1; if(kernel_size == 3) { if((_conv_stride_x == 1) && (_conv_stride_y == 1)) { switch(input->info()->data_type()) { case DataType::F16: // TODO(APPBROWSER-299): Choose the most optimal path and remove others. #define PROCESS_4X_3Y_1Z #if defined(PROCESS_8X_3Y_1Z) options.emplace("#define PROCESS_8X_3Y_1Z"); num_elems_read_per_iteration_x = 16; num_elems_read_per_iteration_y = 5; num_elems_written_per_iteration_x = 8; num_elems_written_per_iteration_y = 3; #elif defined(PROCESS_4X_3Y_1Z) options.emplace("#define PROCESS_4X_3Y_1Z"); num_elems_read_per_iteration_x = 8; num_elems_read_per_iteration_y = 5; num_elems_written_per_iteration_x = 4; num_elems_written_per_iteration_y = 3; #elif defined(PROCESS_4X_4Y_1Z) options.emplace("#define PROCESS_4X_4Y_1Z"); num_elems_read_per_iteration_x = 8; num_elems_read_per_iteration_y = 6; num_elems_written_per_iteration_x = 4; num_elems_written_per_iteration_y = 4; #elif defined(PROCESS_4X_3Y_2Z) options.emplace("#define PROCESS_4X_3Y_2Z"); num_elems_read_per_iteration_x = 8; num_elems_read_per_iteration_y = 5; num_elems_written_per_iteration_x = 4; num_elems_written_per_iteration_y = 3; num_elems_written_per_iteration_z = 2; #endif /* PROCESS_nX_nY_nZ */ #undef PROCESS_8X_3Y_1Z #undef PROCESS_4X_3Y_1Z #undef PROCESS_4X_4Y_1Z #undef PROCESS_4X_3Y_2Z break; case DataType::F32: options.emplace("#define PROCESS_4X_3Y_1Z"); num_elems_read_per_iteration_x = 8; num_elems_read_per_iteration_y = 5; num_elems_written_per_iteration_x = 4; num_elems_written_per_iteration_y = 3; break; default: ARM_COMPUTE_ERROR("Current data type is not supported"); break; } } // FIXME: Just keep one in release else { switch(input->info()->data_type()) { case DataType::F16: options.emplace("#define PROCESS_4X_1Y_1Z"); num_elems_read_per_iteration_x = 8; num_elems_written_per_iteration_x = 4; break; case DataType::F32: // TODO(APPBROWSER-299): Choose the most optimal path and remove others. #define PROCESS_4X_1Y_1Z #if defined(PROCESS_1X_1Y_1Z) options.emplace("#define PROCESS_1X_1Y_1Z"); num_elems_read_per_iteration_x = 3; num_elems_written_per_iteration_x = 1; #elif defined(PROCESS_4X_1Y_1Z) options.emplace("#define PROCESS_4X_1Y_1Z"); num_elems_read_per_iteration_x = 8; num_elems_written_per_iteration_x = 4; #elif defined(PROCESS_8X_1Y_1Z) options.emplace("#define PROCESS_8X_1Y_1Z"); num_elems_read_per_iteration_x = 12; num_elems_written_per_iteration_x = 8; #else /* PROCESS_nX_nY_nZ */ #error Have to declare how many elements to process in one thread. #endif /* PROCESS_nX_nY_nZ */ #undef PROCESS_1X_1Y_1Z #undef PROCESS_4X_1Y_1Z #undef PROCESS_8X_1Y_1Z break; default: ARM_COMPUTE_ERROR("Current data type is not supported"); break; } } } else if(kernel_size == 1) { if(weights->info()->dimension(2) % 2 == 0) { options.emplace("#define WEIGHTS_OPTIMIZATION"); } switch(input->info()->data_type()) { case DataType::F16: #define PROCESS_8X_2Y_1Z #if defined(PROCESS_4X_1Y_1Z) options.emplace("#define PROCESS_4X_1Y_1Z"); num_elems_read_per_iteration_x = 4; num_elems_written_per_iteration_x = 4; #elif defined(PROCESS_4X_2Y_1Z) options.emplace("#define PROCESS_4X_2Y_1Z"); num_elems_read_per_iteration_x = 4; num_elems_read_per_iteration_y = 2; num_elems_written_per_iteration_x = 4; num_elems_written_per_iteration_y = 2; #elif defined(PROCESS_4X_3Y_1Z) options.emplace("#define PROCESS_4X_3Y_1Z"); num_elems_read_per_iteration_x = 4; num_elems_read_per_iteration_y = 3; num_elems_written_per_iteration_x = 4; num_elems_written_per_iteration_y = 3; #elif defined(PROCESS_4X_4Y_1Z) options.emplace("#define PROCESS_4X_4Y_1Z"); num_elems_read_per_iteration_x = 4; num_elems_read_per_iteration_y = 4; num_elems_written_per_iteration_x = 4; num_elems_written_per_iteration_y = 4; #elif defined(PROCESS_4X_2Y_2Z) ARM_COMPUTE_ERROR_ON_MSG((weights->info()->dimension(4) % 2) == 1, "Current 'weights->info()->dimension(4) % 2) == 1' is not supported"); options.emplace("#define PROCESS_4X_2Y_2Z"); num_elems_read_per_iteration_x = 4; num_elems_read_per_iteration_y = 2; num_elems_written_per_iteration_x = 4; num_elems_written_per_iteration_y = 2; num_elems_written_per_iteration_z = 2; #elif defined(PROCESS_8X_1Y_1Z) options.emplace("#define PROCESS_8X_1Y_1Z"); num_elems_read_per_iteration_x = 8; num_elems_written_per_iteration_x = 8; #elif defined(PROCESS_8X_2Y_1Z) options.emplace("#define PROCESS_8X_2Y_1Z"); num_elems_read_per_iteration_x = 8; num_elems_read_per_iteration_y = 2; num_elems_written_per_iteration_x = 8; num_elems_written_per_iteration_y = 2; #else /* PROCESS_4X_1Y_1Z */ #error Have to declare how many elements to process in one thread. #endif /* PROCESS_4X_1Y_1Z */ #undef PROCESS_4X_1Y_1Z #undef PROCESS_4X_2Y_1Z #undef PROCESS_4X_3Y_1Z #undef PROCESS_4X_4Y_1Z #undef PROCESS_4X_2Y_2Z #undef PROCESS_8X_1Y_1Z #undef PROCESS_8X_2Y_1Z break; case DataType::F32: num_elems_read_per_iteration_x = 1; num_elems_written_per_iteration_x = 1; break; default: break; } } else if(kernel_size == 5) { switch(input->info()->data_type()) { case DataType::F16: options.emplace("#define PROCESS_4X_1Y_1Z"); num_elems_read_per_iteration_x = 8; num_elems_written_per_iteration_x = 4; default: break; } } else { } if(_bias != nullptr) { options.emplace("#define BIAS"); } std::stringstream kernel_name; kernel_name << "direct_convolution" << kernel_size << "x" << kernel_size; _kernel = static_cast(GCKernelLibrary::get().create_kernel(kernel_name.str(), options)); unsigned int idx = (_bias == nullptr) ? 3 * num_arguments_per_3D_tensor() : (num_arguments_per_1D_tensor() + 3 * num_arguments_per_3D_tensor()); // Calculate output right and bottom border const int output_width = output->info()->dimension(0); const int output_height = output->info()->dimension(1); const int output_padding_right = ceil_to_multiple(output_width, num_elems_written_per_iteration_x * _lws[0]) - output_width; const int output_padding_bottom = ceil_to_multiple(output_height, num_elems_written_per_iteration_y * _lws[1]) - output_height; // Calculate input right and bottom border const int input_width = input->info()->dimension(0); const int input_height = input->info()->dimension(1); const int input_total_width = std::max(int(input->info()->padding().left), int(_conv_pad_x)) + input_width + std::max(int(input->info()->padding().right), int(_conv_pad_x)); const int input_total_height = std::max(int(input->info()->padding().top), int(_conv_pad_y)) + input_height + std::max(int(input->info()->padding().bottom), int(_conv_pad_y)); const int padding_right1 = ceil_to_multiple(input_total_width, num_elems_read_per_iteration_x * _lws[0]) - input_width - _conv_pad_x; const int padding_bottom1 = ceil_to_multiple(input_total_height, num_elems_read_per_iteration_y * _lws[1]) - input_height - _conv_pad_y; const int upper_bound_w = ceil_to_multiple(((output_width + output_padding_right) * _conv_stride_x + (kernel_size - 1)), num_elems_read_per_iteration_x * _lws[0]) - _conv_pad_x - input_width; const int upper_bound_h = ceil_to_multiple(((output_height + output_padding_bottom) * _conv_stride_y + (kernel_size - 1)), num_elems_read_per_iteration_y * _lws[1]) - _conv_pad_y - input_height; const int padding_right2 = std::max(upper_bound_w, _conv_pad_x); const int padding_bottom2 = std::max(upper_bound_h, _conv_pad_y); const int padding_right = std::max(padding_right1, padding_right2); const int padding_bottom = std::max(padding_bottom1, padding_bottom2); BorderSize border = BorderSize(0, output_padding_right, output_padding_bottom, 0); Window win = calculate_max_enlarged_window(*output->info(), Steps(num_elems_written_per_iteration_x, num_elems_written_per_iteration_y, num_elems_written_per_iteration_z), border); AccessWindowStatic input_access(input->info(), -_conv_pad_x, -_conv_pad_y, input_width + padding_right, input_height + padding_bottom); AccessWindowStatic weights_access = AccessWindowStatic(nullptr, 0, 0, 0, 0); AccessWindowStatic bias_access = AccessWindowStatic(nullptr, 0, 0, 0, 1); switch(weights->info()->data_type()) { case DataType::F16: if((weights->info()->dimension(2) % 2 != 0) || (kernel_size != 1)) { weights_access = AccessWindowStatic(weights->info(), 0, 0, kernel_size + 1, kernel_size); } if(_bias != nullptr) { bias_access = AccessWindowStatic(_bias->info(), 0, 0, _bias->info()->dimension(0) + 1, 1); } break; case DataType::F32: weights_access = AccessWindowStatic(weights->info(), 0, 0, kernel_size, kernel_size); if(_bias != nullptr) { bias_access = AccessWindowStatic(_bias->info(), 0, 0, _bias->info()->dimension(0), 1); } break; default: ARM_COMPUTE_ERROR("Current data type is not supported"); break; } AccessWindowStatic output_access(output->info(), 0, 0, output_width + output_padding_right, output_height + output_padding_bottom); if(_bias != nullptr) { update_window_and_padding(win, input_access, weights_access, bias_access, output_access); } else { update_window_and_padding(win, input_access, weights_access, output_access); } output_access.set_valid_region(win, ValidRegion(Coordinates(), output->info()->tensor_shape())); _kernel.set_argument(idx++, _weights->info()->strides_in_bytes()[3]); // weights_stride_w _kernel.set_argument(idx++, _weights->info()->dimension(2)); // weights_depth IGCKernel::configure(win); } template void GCDirectConvolutionLayerKernel::run(const Window &window) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window); _kernel.use(); _output->set_needs_shifting(true); // Get initial windows Window slice = window.first_slice_window_3D(); Window win_in = window; win_in.adjust(Window::DimX, -_conv_pad_x, true); win_in.adjust(Window::DimY, -_conv_pad_y, true); win_in.set_dimension_step(Window::DimX, window.x().step() * _conv_stride_x); win_in.set_dimension_step(Window::DimY, window.y().step() * _conv_stride_y); Window slice_in = win_in.first_slice_window_3D(); unsigned int idx1 = 2 * num_arguments_per_3D_tensor(); add_3D_tensor_argument(idx1, _weights, 3, slice); if(_bias != nullptr) { Window slice_bias; slice_bias.use_tensor_dimensions(_bias->info()->tensor_shape()); add_1D_tensor_argument(idx1, _bias, 4, slice_bias); } slice.shift(Window::DimX, -(_output->info()->padding()).left); do { unsigned int idx = 0; add_3D_tensor_argument(idx, _input, 1, slice_in); add_3D_tensor_argument(idx, _output, 2, slice); _kernel.update_shader_params(); enqueue(*this, slice, _lws); } while(window.slide_window_slice_3D(slice) && win_in.slide_window_slice_3D(slice_in)); } template class arm_compute::GCDirectConvolutionLayerKernel<1>; template class arm_compute::GCDirectConvolutionLayerKernel<3>; template class arm_compute::GCDirectConvolutionLayerKernel<5>;