/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/GLES_COMPUTE/kernels/GCBatchNormalizationLayerKernel.h" #include "arm_compute/core/AccessWindowStatic.h" #include "arm_compute/core/GLES_COMPUTE/GCHelpers.h" #include "arm_compute/core/GLES_COMPUTE/GCKernelLibrary.h" #include "arm_compute/core/GLES_COMPUTE/IGCTensor.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include "support/ToolchainSupport.h" using namespace arm_compute; namespace { Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const ITensorInfo *mean, const ITensorInfo *var, const ITensorInfo *beta, const ITensorInfo *gamma, float epsilon, ActivationLayerInfo act_info) { ARM_COMPUTE_UNUSED(epsilon); ARM_COMPUTE_UNUSED(var); ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, mean, var); ARM_COMPUTE_ERROR_ON_MISMATCHING_SHAPES(mean, var); if(output->total_size() != 0) { ARM_COMPUTE_ERROR_ON_MISMATCHING_SHAPES(input, output); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); } if(beta != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(mean, beta); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, beta); } if(gamma != nullptr) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(mean, gamma); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, gamma); } if(act_info.enabled()) { ARM_COMPUTE_ERROR_ON(input->data_type() != DataType::F32 && input->data_type() != DataType::F16); ARM_COMPUTE_ERROR_ON(act_info.activation() != ActivationLayerInfo::ActivationLayerInfo::ActivationFunction::RELU && act_info.activation() != ActivationLayerInfo::ActivationLayerInfo::ActivationFunction::BOUNDED_RELU && act_info.activation() != ActivationLayerInfo::ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU); ARM_COMPUTE_ERROR_ON(act_info.b() > act_info.a()); } return Status{}; } std::pair validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, ITensorInfo *mean, ITensorInfo *var, ITensorInfo *beta, ITensorInfo *gamma) { // Output tensor auto initialization if not yet initialized auto_init_if_empty(*output, input->tensor_shape(), 1, input->data_type()); unsigned int num_elems_processed_per_iteration = 1; if(input->data_type() == DataType::F16) { num_elems_processed_per_iteration = 4; } // Configure kernel window Window win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration)); AccessWindowHorizontal input_access(input, 0, num_elems_processed_per_iteration); AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration); AccessWindowStatic mean_access(mean, 0, 0, mean->dimension(0) + 3, mean->dimension(1)); AccessWindowStatic var_access(var, 0, 0, var->dimension(0) + 3, var->dimension(1)); bool window_changed = false; if(beta != nullptr) { AccessWindowStatic beta_access(beta, 0, 0, beta->dimension(0) + 3, beta->dimension(1)); if(gamma != nullptr) { AccessWindowStatic gamma_access(gamma, 0, 0, gamma->dimension(0) + 3, gamma->dimension(1)); window_changed = update_window_and_padding(win, input_access, output_access, mean_access, var_access, beta_access, gamma_access); } else { window_changed = update_window_and_padding(win, input_access, output_access, mean_access, var_access, beta_access); } } else { if(gamma != nullptr) { AccessWindowStatic gamma_access(gamma, 0, 0, gamma->dimension(0) + 3, gamma->dimension(1)); window_changed = update_window_and_padding(win, input_access, output_access, mean_access, var_access, gamma_access); } else { window_changed = update_window_and_padding(win, input_access, output_access, mean_access, var_access); } } output_access.set_valid_region(win, input->valid_region()); Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, win); } } // namespace GCBatchNormalizationLayerKernel::GCBatchNormalizationLayerKernel() : _input(nullptr), _output(nullptr), _mean(nullptr), _var(nullptr), _beta(nullptr), _gamma(nullptr), _epsilon(0.0f) { } void GCBatchNormalizationLayerKernel::configure(const IGCTensor *input, IGCTensor *output, const IGCTensor *mean, const IGCTensor *var, const IGCTensor *beta, const IGCTensor *gamma, float epsilon, ActivationLayerInfo act_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output, mean, var); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), mean->info(), var->info(), (beta != nullptr) ? beta->info() : nullptr, (gamma != nullptr) ? gamma->info() : nullptr, epsilon, act_info)); _input = input; _output = output; _mean = mean; _var = var; _beta = beta; _gamma = gamma; _epsilon = epsilon; // Set build options std::set build_opts; std::string dt_name = (input->info()->data_type() == DataType::F32) ? "DATA_TYPE_FP32" : "DATA_TYPE_FP16"; build_opts.emplace(("#define " + dt_name)); build_opts.emplace(("#define ESPILON " + float_to_string_with_full_precision(_epsilon))); build_opts.emplace(("#define LOCAL_SIZE_X " + support::cpp11::to_string(1))); build_opts.emplace(("#define LOCAL_SIZE_Y " + support::cpp11::to_string(1))); build_opts.emplace(("#define LOCAL_SIZE_Z " + support::cpp11::to_string(1))); if(beta == nullptr) { build_opts.emplace("#define USE_DEFAULT_BETA"); } if(gamma == nullptr) { build_opts.emplace("#define USE_DEFAULT_GAMMA"); } if(act_info.enabled()) { build_opts.emplace("#define " + string_from_activation_func(act_info.activation())); build_opts.emplace("#define A_VAL " + float_to_string_with_full_precision(act_info.a())); build_opts.emplace("#define B_VAL " + float_to_string_with_full_precision(act_info.b())); } // Create kernel _kernel = static_cast(GCKernelLibrary::get().create_kernel("batchnormalization_layer", build_opts)); // Configure kernel window auto win_config = validate_and_configure_window(input->info(), output->info(), mean->info(), var->info(), (beta != nullptr) ? beta->info() : nullptr, (gamma != nullptr) ? gamma->info() : nullptr); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); IGCKernel::configure(win_config.second); } Status GCBatchNormalizationLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const ITensorInfo *mean, const ITensorInfo *var, const ITensorInfo *beta, const ITensorInfo *gamma, float epsilon, ActivationLayerInfo act_info) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, mean, var, beta, gamma, epsilon, act_info)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get(), mean->clone().get(), var->clone().get(), beta->clone().get(), gamma->clone().get()) .first); return Status{}; } void GCBatchNormalizationLayerKernel::run(const Window &window) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window); _kernel.use(); _output->set_needs_shifting(true); Window slice = window.first_slice_window_3D(); Window slice_in = window.first_slice_window_3D(); Window vector_slice = window.first_slice_window_1D(); vector_slice.set(Window::DimX, Window::Dimension(0, 0, 0)); unsigned int idx = 2 * num_arguments_per_3D_tensor(); unsigned int binding_point = 3; add_1D_tensor_argument(idx, _mean, binding_point, vector_slice); add_1D_tensor_argument(idx, _var, ++binding_point, vector_slice); if(_beta != nullptr) { add_1D_tensor_argument(idx, _beta, ++binding_point, vector_slice); } if(_gamma != nullptr) { add_1D_tensor_argument(idx, _gamma, ++binding_point, vector_slice); } slice.shift(Window::DimX, -(_output->info()->padding()).left); do { idx = 0; add_3D_tensor_argument(idx, _input, 1, slice_in); add_3D_tensor_argument(idx, _output, 2, slice); _kernel.update_shader_params(); enqueue(*this, slice); } while(window.slide_window_slice_3D(slice) && window.slide_window_slice_3D(slice_in)); }