/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ layout(local_size_x = LOCAL_SIZE_X, local_size_y = LOCAL_SIZE_Y, local_size_z = LOCAL_SIZE_Z) in; #include "helpers.h" #ifdef DATA_TYPE_FP32 precision highp float; BUFFER_DECLARATION(src, 1, float, readonly); BUFFER_DECLARATION(dst, 2, float, writeonly); layout(std140) uniform shader_params { IMAGE_PARAM_DECLARATION(src); IMAGE_PARAM_DECLARATION(dst); }; #define LOAD16(r, name, offset) \ r.x = LOAD4(name, offset); \ r.y = LOAD4(name, offset + uint(1)); \ r.z = LOAD4(name, offset + uint(2)); \ r.w = LOAD4(name, offset + uint(3)) #define STORE16(name, offset, r) \ STORE4(name, offset, r.x); \ STORE4(name, offset + uint(1), r.y); \ STORE4(name, offset + uint(2), r.z); \ STORE4(name, offset + uint(3), r.w) /** This OpenGL ES kernel computes the matrix transposition of input matrix * * @param[in] src_ptr Pointer to the source matrix. Supported data types: F32 * @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix * @param[out] dst_ptr Pointer to the destination matrix Supported data type: same as src_ptr * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes) * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes) * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix */ void main(void) { // Compute source address Image src = CONVERT_TO_IMAGE_STRUCT(src); Image dst = CONVERT_TO_IMAGE_STRUCT(dst); // Load the NxN block at (x, y) vec4 u0; vec4 u1; vec4 u2; vec4 u3; LOAD16(u0, src, offset(src, 0, 0)); LOAD16(u1, src, offset(src, 0, 1)); LOAD16(u2, src, offset(src, 0, 2)); LOAD16(u3, src, offset(src, 0, 3)); // Transpose the block vec4 tmp; tmp.xyz = u0.yzw; u0.y = u1.x; u0.z = u2.x; u0.w = u3.x; u1.x = tmp.x; u2.x = tmp.y; u3.x = tmp.z; tmp.xy = u1.zw; u1.z = u2.y; u1.w = u3.y; u2.y = tmp.x; u3.y = tmp.y; tmp.x = u2.w; u2.w = u3.z; u3.z = tmp.x; // Store the block at (y, x) uint dst_offset_in_bytes = uint(16) * uint(gl_GlobalInvocationID.y) + uint(4) * uint(gl_GlobalInvocationID.x) * (dst.stride_y) + (dst.offset_first_element_in_bytes); STORE16(dst, uint((dst_offset_in_bytes + uint(0) * dst.stride_y) >> 2), u0); STORE16(dst, uint((dst_offset_in_bytes + uint(1) * dst.stride_y) >> 2), u1); STORE16(dst, uint((dst_offset_in_bytes + uint(2) * dst.stride_y) >> 2), u2); STORE16(dst, uint((dst_offset_in_bytes + uint(3) * dst.stride_y) >> 2), u3); } #elif defined(DATA_TYPE_FP16) precision mediump float; BUFFER_DECLARATION(src, 1, uvec2, readonly); BUFFER_DECLARATION(dst, 2, uvec2, writeonly); layout(std140) uniform shader_params { IMAGE_PARAM_DECLARATION(src); IMAGE_PARAM_DECLARATION(dst); }; /** This OpenGL ES kernel computes the matrix transposition of input matrix * * @param[in] src_ptr Pointer to the source matrix. Supported data types: F16 * @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix * @param[out] dst_ptr Pointer to the destination matrix Supported data type: same as src_ptr * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes) * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes) * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix */ void main(void) { // Compute source address Image src = GC_CONVERT_TO_IMAGE_STRUCT(src); Image dst = GC_CONVERT_TO_IMAGE_STRUCT(dst); // Load the NxN block at (x, y) vec4 u0; vec4 u1; vec4 u2; vec4 u3; uvec2 packed_s[4]; GC_LOAD1_2D_OFFSET(packed_s[0], src, 0, 0); GC_LOAD1_2D_OFFSET(packed_s[1], src, 0, 1); GC_LOAD1_2D_OFFSET(packed_s[2], src, 0, 2); GC_LOAD1_2D_OFFSET(packed_s[3], src, 0, 3); u0 = vec4(unpackHalf2x16(packed_s[0].x), unpackHalf2x16(packed_s[0].y)); u1 = vec4(unpackHalf2x16(packed_s[1].x), unpackHalf2x16(packed_s[1].y)); u2 = vec4(unpackHalf2x16(packed_s[2].x), unpackHalf2x16(packed_s[2].y)); u3 = vec4(unpackHalf2x16(packed_s[3].x), unpackHalf2x16(packed_s[3].y)); // Transpose the block vec4 tmp; tmp.xyz = u0.yzw; u0.y = u1.x; u0.z = u2.x; u0.w = u3.x; u1.x = tmp.x; u2.x = tmp.y; u3.x = tmp.z; tmp.xy = u1.zw; u1.z = u2.y; u1.w = u3.y; u2.y = tmp.x; u3.y = tmp.y; tmp.x = u2.w; u2.w = u3.z; u3.z = tmp.x; // Store the block at (y, x) uint dst_offset_in_bytes = uint(8) * uint(gl_GlobalInvocationID.y) + uint(gl_GlobalInvocationID.x) * (dst_step_y) + (dst.offset_first_element_in_bytes); packed_s[0] = uvec2(packHalf2x16(u0.xy), packHalf2x16(u0.zw)); packed_s[1] = uvec2(packHalf2x16(u1.xy), packHalf2x16(u1.zw)); packed_s[2] = uvec2(packHalf2x16(u2.xy), packHalf2x16(u2.zw)); packed_s[3] = uvec2(packHalf2x16(u3.xy), packHalf2x16(u3.zw)); GC_STORE1(packed_s[0], dst, uint((dst_offset_in_bytes + uint(0) * dst_stride_y) >> 3)); GC_STORE1(packed_s[1], dst, uint((dst_offset_in_bytes + uint(1) * dst_stride_y) >> 3)); GC_STORE1(packed_s[2], dst, uint((dst_offset_in_bytes + uint(2) * dst_stride_y) >> 3)); GC_STORE1(packed_s[3], dst, uint((dst_offset_in_bytes + uint(3) * dst_stride_y) >> 3)); } #endif /*ARM_COMPUTE_ENABLE_FP16*/