/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ layout(local_size_x = LOCAL_SIZE_X, local_size_y = LOCAL_SIZE_Y, local_size_z = LOCAL_SIZE_Z) in; #include "helpers_cs.h" #if defined(DATA_TYPE_FP16) precision mediump float; #endif // DATA_TYPE_FP16 // Common definitions #define MAX_OP(x, y) max((x), (y)) #define ADD_OP(x, y) ((x) + (y)) #define SUB_OP(x, y) ((x) - (y)) #define DIV_OP(x, y) ((x) / (y)) #define EXP_OP(x) exp((x)) const float float_min = -1.0 / 0.0; const vec4 vec4_min = vec4(float_min); #ifdef SOFTMAX_LAYER_MAX /** Identifies the maximum value across the 1st dimension. * * @note The data type must be passed at compile time using "#define DATA_TYPE_NAME". e.g. "#define DATA_TYPE_FP32" * @note In case the input is not multiple of 4 NON_MULTIPLE_OF_4 must be passed. * * @param[in] src_ptr Pointer to the source tensor slice. Supported data types: F16/F32 * @param[in] src_attrs The attributes of the source tensor * @param[out] dst_ptr Pointer to the destination tensor slice. Supported data types: same as @p src_ptr * @param[in] dst_attrs The attributes of the destination tensor * @param[in] width Input image width */ SHADER_PARAMS_DECLARATION { Tensor3DAttributes src_attrs; Tensor3DAttributes dst_attrs; uint width; }; #if defined(DATA_TYPE_FP32) TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly); TENSOR_DECLARATION(2, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly); void main(void) { ImageIterator src_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(src_attrs, src_shift); ImageIterator dst_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(dst_attrs, dst_shift); // Initialize local maximum vec4 max_val = vec4_min; // Calculate max of row uint width2 = width >> 2; for(int i = 0; i < int(width2); i++) { vec4 data = VLOAD4(vec4, src_ptr, IMAGE_OFFSET(src_iter, i << 2, 0)); max_val = MAX_OP(data, max_val); } #ifdef NON_MULTIPLE_OF_4 // Handle non multiple of 4 for(int i = int(width2 << 2); i < int(width); i++) { float data = LOAD(src_ptr, IMAGE_OFFSET(src_iter, i, 0)); max_val.x = MAX_OP(data, max_val.x); } #endif /* NON_MULTIPLE_OF_4 */ // Perform max reduction max_val.xy = MAX_OP(max_val.xy, max_val.zw); max_val.x = MAX_OP(max_val.x, max_val.y); // Store result STORE_CURRENT_ITEM(dst_ptr, dst_iter, max_val.x); } #elif defined(DATA_TYPE_FP16) TENSOR_DECLARATION(1, srcBuffer, uint, src_ptr, src_shift, 2, readonly); TENSOR_DECLARATION(2, dstBuffer, uint, dst_ptr, dst_shift, 2, writeonly); void main(void) { ImageIterator src_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(src_attrs, src_shift); ImageIterator dst_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(dst_attrs, dst_shift); // Initialize local maximum vec4 max_val = vec4_min; // Calculate max of row uint width2 = width >> 2; for(int i = 0; i < int(width2); i++) { vec4 data = VLOAD2_UNPACK4_HALF(src_ptr, IMAGE_OFFSET(src_iter, i << 2, 0)); max_val = MAX_OP(data, max_val); } #ifdef NON_MULTIPLE_OF_4 // Handle non multiple of 4 for(int i = int(width2 << 2); i < int(width); i = i + 2) { vec2 data = LOAD_UNPACK2_HALF(src_ptr, IMAGE_OFFSET(src_iter, i, 0)); max_val.x = MAX_OP(data.x, max_val.x); if((i + 1) < int(width)) { max_val.x = MAX_OP(data.y, max_val.x); } } #endif /* NON_MULTIPLE_OF_4 */ // Perform max reduction max_val.xy = MAX_OP(max_val.xy, max_val.zw); max_val.x = MAX_OP(max_val.x, max_val.y); STORE_PACK2_CURRENT_ITEM_HALF(dst_ptr, dst_iter, max_val.xy); } #else // DATA_TYPE_FP32 #error Data type not supported #endif // DATA_TYPE_FP32 #elif defined(SOFTMAX_LAYER_SHIFT_EXP_SUM) /** Shifts the values of the input tensor by the max calculated in softmax_layer_max kernel, * then gets the exponent of each element as sums all elements across each row. * * @note The data type must be passed at compile time using "#define DATA_TYPE_NAME". e.g. "#define DATA_TYPE_FP32" * @note In case the input is not multiple of 4 NON_MULTIPLE_OF_4 must be passed. * * @param[in] src_ptr Pointer to the source tensor slice. Supported data types: F16/F32 * @param[in] src_attrs The attributes of the source tensor * @param[in] max_ptr Pointer to the max values tensor slice. Supported data types: same as @p src_ptr * @param[in] max_attrs The attributes of the max values tensor * @param[out] dst_ptr Pointer to the destination tensor slice. Supported data types: same as @p src_ptr * @param[in] dst_attrs The attributes of the destination tensor * @param[out] sum_ptr Pointer to the sum values tensor slice. Supported data types: same as @p src_ptr * @param[in] sum_attrs The attributes of the sum values tensor * @param[in] width Input image width */ SHADER_PARAMS_DECLARATION { Tensor3DAttributes src_attrs; Tensor3DAttributes max_attrs; Tensor3DAttributes dst_attrs; Tensor3DAttributes sum_attrs; uint width; }; #if defined(DATA_TYPE_FP32) TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly); TENSOR_DECLARATION(2, maxBuffer, float, max_ptr, max_shift, 2, readonly); TENSOR_DECLARATION(3, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly); TENSOR_DECLARATION(4, sumBuffer, float, sum_ptr, sum_shift, 2, writeonly); void main(void) { ImageIterator src_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(src_attrs, src_shift); ImageIterator dst_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(dst_attrs, dst_shift); ImageIterator max_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(max_attrs, max_shift); ImageIterator sum_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(sum_attrs, sum_shift); // Load max value of 1D logits vector (row) vec4 max_val = vec4(LOAD_CURRENT_ITEM(max_ptr, max_iter)); // Set sum vector vec4 sum1D = vec4(0); // Shift values, exp and sum uint width2 = width >> 2; for(int i = 0; i < int(width2); i++) { vec4 data = VLOAD4(vec4, src_ptr, IMAGE_OFFSET(src_iter, i << 2, 0)); data = SUB_OP(data, max_val); data = EXP_OP(data); VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, i << 2, 0), data); sum1D = ADD_OP(sum1D, data); } #ifdef NON_MULTIPLE_OF_4 // Handle non multiple of 4 for(int i = int(width2 << 2); i < int(width); i++) { float data = LOAD(src_ptr, IMAGE_OFFSET(src_iter, i, 0)); data = SUB_OP(data, max_val.x); data = EXP_OP(data); STORE(dst_ptr, IMAGE_OFFSET(dst_iter, i, 0), data); sum1D.x = ADD_OP(sum1D.x, data); } #endif /* NON_MULTIPLE_OF_4 */ // Perform min/max reduction sum1D.xy = ADD_OP(sum1D.xy, sum1D.zw); sum1D.x = ADD_OP(sum1D.x, sum1D.y); // Calculate and store result STORE_CURRENT_ITEM(sum_ptr, sum_iter, sum1D.x); } #elif defined(DATA_TYPE_FP16) TENSOR_DECLARATION(1, srcBuffer, uint, src_ptr, src_shift, 2, readonly); TENSOR_DECLARATION(2, maxBuffer, uint, max_ptr, max_shift, 2, readonly); TENSOR_DECLARATION(3, dstBuffer, uint, dst_ptr, dst_shift, 2, writeonly); TENSOR_DECLARATION(4, sumBuffer, uint, sum_ptr, sum_shift, 2, writeonly); void main(void) { ImageIterator src_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(src_attrs, src_shift); ImageIterator dst_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(dst_attrs, dst_shift); ImageIterator max_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(max_attrs, max_shift); ImageIterator sum_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(sum_attrs, sum_shift); // Load max value of 1D logits vector (row) vec2 datamaxinit = LOAD_UNPACK2_CURRENT_ITEM_HALF(max_ptr, max_iter); vec4 max_val = vec4(datamaxinit.x); // Set sum vector vec4 sum1D = vec4(0.f); // Shift values, exp and sum uint width2 = width >> 2; for(int i = 0; i < int(width2); i++) { vec4 data = VLOAD2_UNPACK4_HALF(src_ptr, IMAGE_OFFSET(src_iter, i << 2, 0)); data = SUB_OP(data, max_val); data = EXP_OP(data); VSTORE2_PACK4_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, i << 2, 0), data); sum1D = ADD_OP(sum1D, data); } #ifdef NON_MULTIPLE_OF_4 // Handle non multiple of 4 for(int i = int(width2 << 2); i < int(width); i = i + 2) { float data; vec2 datamiddle = LOAD_UNPACK2_HALF(src_ptr, IMAGE_OFFSET(src_iter, i, 0)); data = SUB_OP(datamiddle.x, max_val.x); data = EXP_OP(data); vec2 datares; if((i + 1) < int(width)) { float data2; data2 = SUB_OP(datamiddle.y, max_val.x); data2 = EXP_OP(data2); datares = vec2(data, data2); data = ADD_OP(data2, data); } else { datares = vec2(data, 0.f); } STORE_PACK2_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, i, 0), datares); sum1D.x = ADD_OP(sum1D.x, data); } #endif /* NON_MULTIPLE_OF_4 */ // Perform min/max reduction sum1D.xy = ADD_OP(sum1D.xy, sum1D.zw); sum1D.x = ADD_OP(sum1D.x, sum1D.y); // Calculate and store result STORE_PACK2_CURRENT_ITEM_HALF(sum_ptr, sum_iter, sum1D.xy); } #else // DATA_TYPE_FP32 #error Data type not supported #endif // DATA_TYPE_FP32 #elif defined(SOFTMAX_LAYER_NORM) /** Divides all the values of the input tensor by the sum calculated from softmax_layer_shift_exp_sum kernel. * * @note The data type must be passed at compile time using "#define DATA_TYPE_NAME". e.g. "#define DATA_TYPE_FP32" * * @param[in] src_ptr Pointer to the source tensor slice. Supported data types: F16/F32 * @param[in] src_attrs The attributes of the source tensor * @param[in] sum_ptr Pointer to the sum values tensor slice. Supported data types: same as @p src_ptr * @param[in] sum_attrs The attributes of the sum values tensor * @param[out] dst_ptr Pointer to the destination tensor slice. Supported data types: same as @p src_ptr * @param[in] dst_attrs The attributes of the destination tensor */ SHADER_PARAMS_DECLARATION { Tensor3DAttributes src_attrs; Tensor3DAttributes sum_attrs; Tensor3DAttributes dst_attrs; }; #if defined(DATA_TYPE_FP32) TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly); TENSOR_DECLARATION(2, sumBuffer, float, sum_ptr, sum_shift, 2, readonly); TENSOR_DECLARATION(3, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly); void main(void) { ImageIterator src_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(src_attrs, src_shift); ImageIterator dst_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(dst_attrs, dst_shift); ImageIterator sum_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR_NO_STEP(sum_attrs, sum_shift); // Load max value of 1D logits vector (row) vec4 sum_val = vec4(LOAD(sum_ptr, IMAGE_OFFSET(sum_iter, 0, gl_GlobalInvocationID.y))); vec4 data = VLOAD4_CURRENT_ITEM(vec4, src_ptr, src_iter); VSTORE4_CURRENT_ITEM(dst_ptr, dst_iter, DIV_OP(data, sum_val)); } #elif defined(DATA_TYPE_FP16) TENSOR_DECLARATION(1, srcBuffer, uint, src_ptr, src_shift, 2, readonly); TENSOR_DECLARATION(2, sumBuffer, uint, sum_ptr, sum_shift, 2, readonly); TENSOR_DECLARATION(3, dstBuffer, uint, dst_ptr, dst_shift, 2, writeonly); void main(void) { ImageIterator src_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(src_attrs, src_shift); ImageIterator dst_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(dst_attrs, dst_shift); ImageIterator sum_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR_NO_STEP(sum_attrs, sum_shift); // Load max value of 1D logits vector (row) vec4 sum_val = vec4(LOAD_UNPACK2_HALF(sum_ptr, IMAGE_OFFSET(sum_iter, 0, gl_GlobalInvocationID.y)).x); vec4 data = VLOAD2_UNPACK4_CURRENT_ITEM_HALF(src_ptr, src_iter); VSTORE2_PACK4_CURRENT_ITEM_HALF(dst_ptr, dst_iter, DIV_OP(data, sum_val)); } #else // DATA_TYPE_FP32 #error Data type not supported #endif // DATA_TYPE_FP32 #endif // SOFTMAX_LAYER_MAX