/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ layout(local_size_x = LOCAL_SIZE_X, local_size_y = LOCAL_SIZE_Y, local_size_z = LOCAL_SIZE_Z) in; #include "helpers.h" #define MAX_OP(x, y) max((x), (y)) #define ADD_OP(x, y) ((x) + (y)) #define SUB_OP(x, y) ((x) - (y)) #define DIV_OP(x, y) ((x) / (y)) #define EXP_OP(x) exp((x)) #if defined(DATA_TYPE_FP32) const float MINVAL = -1.0 / 0.0; vec4 type_min = CONVERT(MINVAL, vec4); #define LOAD16(name, offset) \ vec4(LOAD4(name, offset), \ LOAD4(name, offset + uint(1)), \ LOAD4(name, offset + uint(2)), \ LOAD4(name, offset + uint(3))) #define STORE16(name, offset, value) \ STORE4(name, offset, value.x); \ STORE4(name, offset + uint(1), value.y); \ STORE4(name, offset + uint(2), value.z); \ STORE4(name, offset + uint(3), value.w) #ifdef SOFTMAX_LAYER_MAX BUFFER_DECLARATION(src, 1, float, readonly); BUFFER_DECLARATION(dst, 2, float, writeonly); #elif defined(SOFTMAX_LAYER_SHIFT_EXP_SUM) BUFFER_DECLARATION(src, 1, float, readonly); BUFFER_DECLARATION(max, 2, float, readonly); BUFFER_DECLARATION(dst, 3, float, writeonly); BUFFER_DECLARATION(sum, 4, float, writeonly); #elif defined(SOFTMAX_LAYER_NORM) BUFFER_DECLARATION(src, 1, float, readonly); BUFFER_DECLARATION(sum, 2, float, readonly); BUFFER_DECLARATION(dst, 3, float, writeonly); #endif // SOFTMAX_LAYER_MAX layout(std140) uniform shader_params { #ifdef SOFTMAX_LAYER_MAX TENSOR3D_PARAM_DECLARATION(src); TENSOR3D_PARAM_DECLARATION(dst); uint width; #elif defined(SOFTMAX_LAYER_SHIFT_EXP_SUM) TENSOR3D_PARAM_DECLARATION(src); TENSOR3D_PARAM_DECLARATION(max); TENSOR3D_PARAM_DECLARATION(dst); TENSOR3D_PARAM_DECLARATION(sum); uint width; #elif defined(SOFTMAX_LAYER_NORM) TENSOR3D_PARAM_DECLARATION(src); TENSOR3D_PARAM_DECLARATION(sum); TENSOR3D_PARAM_DECLARATION(dst); #endif // SOFTMAX_LAYER_MAX }; #ifdef SOFTMAX_LAYER_MAX /** Identifies the maximum value across the 1st dimension. * * @note Datatype must be given as a preprocessor argument using "#define DATA_TYPE_FP32" * * @param[in] src_ptr Pointer to the source tensor slice. Supported data types: F32 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] dst_ptr Pointer to the destination tensor slice. Supported data types: same as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor * @param[in] width Input image width */ void main(void) { Image src = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(src); Image dst = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst); // Initialize local maximum vec4 max_val = CONVERT(type_min, vec4); // Calculate max of row uint width2 = width >> 2; for(int i = 0; i < int(width2); i++) { vec4 data = LOAD16(src, offset(src, i << 2, 0)); max_val = MAX_OP(data, max_val); } #ifdef NON_MULTIPLE_OF_4 // Handle non multiple of 4 for(int i = int(width2 << 2); i < int(width); i++) { float data = LOAD4(src, offset(src, i, 0)); max_val.x = MAX_OP(data, max_val.x); } #endif /* NON_MULTIPLE_OF_4 */ // Perform max reduction max_val.xy = MAX_OP(max_val.xy, max_val.zw); max_val.x = MAX_OP(max_val.x, max_val.y); // Store result STORE4(dst, CURRENT_OFFSET(dst), max_val.x); } #elif defined(SOFTMAX_LAYER_SHIFT_EXP_SUM) // SOFTMAX_LAYER_MAX /** Shifts the values of the input tensor by the max calculated in softmax_layer_max kernel, * then gets the exponent of each element as sums all elements across each row. * * @note Datatype must be given as a preprocessor argument using "#define DATA_TYPE_FP32" * * @note In case the input is not multiple of 4 NON_MULTIPLE_OF_4 must be passed. * * @param[in] src_ptr Pointer to the source tensor slice. Supported data types: F32 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[in] max_ptr Pointer to the max values tensor slice. Supported data types: same as @p src_ptr * @param[in] max_stride_x Stride of the max values tensor in X dimension (in bytes) * @param[in] max_step_x max_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] max_stride_y Stride of the max values tensor in Y dimension (in bytes) * @param[in] max_step_y max_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] max_stride_z Stride of the max values tensor in Z dimension (in bytes) * @param[in] max_step_z max_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] max_offset_first_element_in_bytes The offset of the first element in the max values tensor * @param[out] dst_ptr Pointer to the destination tensor slice. Supported data types: same as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor * @param[out] sum_ptr Pointer to the sum values tensor slice. Supported data types: same as @p src_ptr * @param[in] sum_stride_x Stride of the sum values tensor in X dimension (in bytes) * @param[in] sum_step_x sum_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] sum_stride_y Stride of the sum values tensor in Y dimension (in bytes) * @param[in] sum_step_y sum_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] sum_stride_z Stride of the sum values tensor in Z dimension (in bytes) * @param[in] sum_step_z sum_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] sum_offset_first_element_in_bytes The offset of the first element in the sum values tensor * @param[in] width Input image width */ void main(void) { Image src = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(src); Image dst = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst); Image max = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(max); Image sum = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(sum); // Load max value of 1D logits vector (row) vec4 max_val = CONVERT(LOAD4(max, CURRENT_OFFSET(max)), vec4); // Set sum vector vec4 sum1D = CONVERT(0, vec4); // Shift values, exp and sum uint width2 = width >> 2; for(int i = 0; i < int(width2); i++) { vec4 data = LOAD16(src, offset(src, i << 2, 0)); data = SUB_OP(data, max_val); data = EXP_OP(data); STORE16(dst, offset(dst, i << 2, 0), data); sum1D = ADD_OP(sum1D, data); } #ifdef NON_MULTIPLE_OF_4 // Handle non multiple of 4 for(int i = int(width2 << 2); i < int(width); i++) { float data; data = LOAD4(src, offset(src, i, 0)); data = SUB_OP(data, max_val.x); data = EXP_OP(data); STORE4(dst, offset(dst, i, 0), data); sum1D.x = ADD_OP(sum1D.x, data); } #endif /* NON_MULTIPLE_OF_4 */ // Perform min/max reduction sum1D.xy = ADD_OP(sum1D.xy, sum1D.zw); sum1D.x = ADD_OP(sum1D.x, sum1D.y); // Calculate and store result STORE4(sum, CURRENT_OFFSET(sum), sum1D.x); } #elif defined(SOFTMAX_LAYER_NORM) // SOFTMAX_LAYER_MAX /** Divides all the values of the input tensor by the sum calculated from softmax_layer_shift_exp_sum kernel. * * @note Datatype must be given as a preprocessor argument using "#define DATA_TYPE_FP32" * * @param[in] src_ptr Pointer to the source tensor slice. Supported data types: F32 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[in] sum_ptr Pointer to the sum values tensor slice. Supported data types: same as @p src_ptr * @param[in] sum_stride_x Stride of the sum values tensor in X dimension (in bytes) * @param[in] sum_step_x sum_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] sum_stride_y Stride of the sum values tensor in Y dimension (in bytes) * @param[in] sum_step_y sum_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] sum_stride_z Stride of the sum values tensor in Z dimension (in bytes) * @param[in] sum_step_z sum_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] sum_offset_first_element_in_bytes The offset of the first element in the sum values tensor * @param[out] dst_ptr Pointer to the destination tensor slice. Supported data types: same as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor */ void main(void) { Image src = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(src); Image dst = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst); Image sum = CONVERT_TENSOR3D_TO_IMAGE_STRUCT_NO_STEP(sum); // Load max value of 1D logits vector (row) vec4 sum_val = CONVERT(LOAD4(sum, offset(sum, 0, int(gl_GlobalInvocationID.y))), vec4); vec4 data = LOAD16(src, CURRENT_OFFSET(src)); STORE16(dst, CURRENT_OFFSET(dst), DIV_OP(data, sum_val)); } #endif // SOFTMAX_LAYER_MAX #elif defined(DATA_TYPE_FP16) precision mediump float; const float MINVAL1 = -1.0 / 0.0; vec4 type_min1 = CONVERT(MINVAL1, vec4); #define GC_LOAD4_IMAGE(r, name, x, y) \ load_and_unpack(r.xy, name, x, y); \ load_and_unpack(r.zw, name, (x + 2), y) #define GC_STORE4_IMAGE(r, name, x, y) \ GC_STORE1_2D_OFFSET(uint(packHalf2x16(r.xy)), name, x, y); \ GC_STORE1_2D_OFFSET(uint(packHalf2x16(r.zw)), name, (x + 2), y) #ifdef SOFTMAX_LAYER_MAX BUFFER_DECLARATION(src, 1, uint, readonly); BUFFER_DECLARATION(dst, 2, uint, writeonly); #elif defined(SOFTMAX_LAYER_SHIFT_EXP_SUM) BUFFER_DECLARATION(src, 1, uint, readonly); BUFFER_DECLARATION(max, 2, uint, readonly); BUFFER_DECLARATION(dst, 3, uint, writeonly); BUFFER_DECLARATION(sum, 4, uint, writeonly); #elif defined(SOFTMAX_LAYER_NORM) BUFFER_DECLARATION(src, 1, uint, readonly); BUFFER_DECLARATION(sum, 2, uint, readonly); BUFFER_DECLARATION(dst, 3, uint, writeonly); #endif // SOFTMAX_LAYER_MAX layout(std140) uniform shader_params { #ifdef SOFTMAX_LAYER_MAX TENSOR3D_PARAM_DECLARATION(src); TENSOR3D_PARAM_DECLARATION(dst); uint width; #elif defined(SOFTMAX_LAYER_SHIFT_EXP_SUM) TENSOR3D_PARAM_DECLARATION(src); TENSOR3D_PARAM_DECLARATION(max); TENSOR3D_PARAM_DECLARATION(dst); TENSOR3D_PARAM_DECLARATION(sum); uint width; #elif defined(SOFTMAX_LAYER_NORM) TENSOR3D_PARAM_DECLARATION(src); TENSOR3D_PARAM_DECLARATION(sum); TENSOR3D_PARAM_DECLARATION(dst); #endif // SOFTMAX_LAYER_MAX }; #define load_and_unpack(rs, names, xs, ys) \ do \ { \ uint packed_s; \ GC_LOAD1_2D_OFFSET(packed_s, names, xs, ys); \ rs = vec2(unpackHalf2x16(packed_s)); \ } while(false) #ifdef SOFTMAX_LAYER_MAX /** Identifies the maximum value across the 1st dimension. * * @note Datatype must be given as a preprocessor argument using "#define DATA_TYPE_FP16" * * @param[in] src_ptr Pointer to the source tensor slice. Supported data types: F16 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] dst_ptr Pointer to the destination tensor slice. Supported data types: same as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor * @param[in] width Input image width */ void main(void) { Image src = GC_CONVERT_TENSOR3D_TO_IMAGE_STRUCT(src); Image dst = GC_CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst); // Initialize local maximum vec4 max_val1 = CONVERT(type_min1, vec4); // Calculate max of row uint width2 = width >> 2; for(int i = 0; i < int(width2); i++) { vec4 data1; GC_LOAD4_IMAGE(data1, src, (i << 2), 0); max_val1 = MAX_OP(data1, max_val1); } #ifdef NON_MULTIPLE_OF_4 // Handle non multiple of 4 for(int i = int(width2 << 2); i < int(width); i = i + 2) { vec2 data; load_and_unpack(data, src, i, 0); max_val1.x = MAX_OP(data.x, max_val1.x); if((i + 1) < int(width)) { max_val1.x = MAX_OP(data.y, max_val1.x); } } #endif /* NON_MULTIPLE_OF_4 */ // Perform max reduction max_val1.xy = MAX_OP(max_val1.xy, max_val1.zw); max_val1.x = MAX_OP(max_val1.x, max_val1.y); vec2 res1 = vec2(max_val1.x, 0.f); uint res; res = uint(packHalf2x16(res1)); // Store result GC_STORE1_2D_OFFSET(res, dst, 0, 0); } #elif defined(SOFTMAX_LAYER_SHIFT_EXP_SUM) // SOFTMAX_LAYER_MAX /** Shifts the values of the input tensor by the max calculated in softmax_layer_max kernel, * then gets the exponent of each element as sums all elements across each row. * * @note Datatype must be given as a preprocessor argument using "#define DATA_TYPE_FP16" * * @note In case the input is not multiple of 4 NON_MULTIPLE_OF_4 must be passed. * * @param[in] src_ptr Pointer to the source tensor slice. Supported data types: F16 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[in] max_ptr Pointer to the max values tensor slice. Supported data types: same as @p src_ptr * @param[in] max_stride_x Stride of the max values tensor in X dimension (in bytes) * @param[in] max_step_x max_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] max_stride_y Stride of the max values tensor in Y dimension (in bytes) * @param[in] max_step_y max_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] max_stride_z Stride of the max values tensor in Z dimension (in bytes) * @param[in] max_step_z max_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] max_offset_first_element_in_bytes The offset of the first element in the max values tensor * @param[out] dst_ptr Pointer to the destination tensor slice. Supported data types: same as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor * @param[out] sum_ptr Pointer to the sum values tensor slice. Supported data types: same as @p src_ptr * @param[in] sum_stride_x Stride of the sum values tensor in X dimension (in bytes) * @param[in] sum_step_x sum_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] sum_stride_y Stride of the sum values tensor in Y dimension (in bytes) * @param[in] sum_step_y sum_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] sum_stride_z Stride of the sum values tensor in Z dimension (in bytes) * @param[in] sum_step_z sum_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] sum_offset_first_element_in_bytes The offset of the first element in the sum values tensor * @param[in] width Input image width */ void main(void) { Image src = GC_CONVERT_TENSOR3D_TO_IMAGE_STRUCT(src); Image dst = GC_CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst); Image max = GC_CONVERT_TENSOR3D_TO_IMAGE_STRUCT(max); Image sum = GC_CONVERT_TENSOR3D_TO_IMAGE_STRUCT(sum); // Load max value of 1D logits vector (row) vec2 datamaxinit; load_and_unpack(datamaxinit, max, 0, 0); vec4 max_val = CONVERT(datamaxinit.x, vec4); // Set sum vector vec4 sum1D1 = CONVERT(0.f, vec4); // Shift values, exp and sum uint width2 = width >> 2; for(int i = 0; i < int(width2); i++) { vec4 data; GC_LOAD4_IMAGE(data, src, (i << 2), 0); data = SUB_OP(data, max_val); data = EXP_OP(data); GC_STORE4_IMAGE(data, dst, (i << 2), 0); sum1D1 = ADD_OP(sum1D1, data); } #ifdef NON_MULTIPLE_OF_4 // Handle non multiple of 4 for(int i = int(width2 << 2); i < int(width); i = i + 2) { vec2 datamiddle; float data1; load_and_unpack(datamiddle, src, i, 0); data1 = SUB_OP(datamiddle.x, max_val.x); data1 = EXP_OP(data1); vec2 datares1; if((i + 1) < int(width)) { float data2; data2 = SUB_OP(datamiddle.y, max_val.x); data2 = EXP_OP(data2); datares1 = vec2(data1, data2); data1 = ADD_OP(data2, data1); } else { datares1 = vec2(data1, 0.f); } uint datares; datares = uint(packHalf2x16(datares1)); GC_STORE1_2D_OFFSET(datares, dst, i, 0); sum1D1.x = ADD_OP(sum1D1.x, data1); } #endif /* NON_MULTIPLE_OF_4 */ // Perform min/max reduction sum1D1.xy = ADD_OP(sum1D1.xy, sum1D1.zw); sum1D1.x = ADD_OP(sum1D1.x, sum1D1.y); vec2 res1 = vec2(sum1D1.x, 0.f); uint res; res = uint(packHalf2x16(res1)); // Calculate and store result GC_STORE1_2D_OFFSET(res, sum, 0, 0); } #elif defined(SOFTMAX_LAYER_NORM) // SOFTMAX_LAYER_MAX /** Divides all the values of the input tensor by the sum calculated from softmax_layer_shift_exp_sum kernel. * * @note Datatype must be given as a preprocessor argument using "#define DATA_TYPE_FP16" * * @param[in] src_ptr Pointer to the source tensor slice. Supported data types: F16 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[in] sum_ptr Pointer to the sum values tensor slice. Supported data types: same as @p src_ptr * @param[in] sum_stride_x Stride of the sum values tensor in X dimension (in bytes) * @param[in] sum_step_x sum_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] sum_stride_y Stride of the sum values tensor in Y dimension (in bytes) * @param[in] sum_step_y sum_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] sum_stride_z Stride of the sum values tensor in Z dimension (in bytes) * @param[in] sum_step_z sum_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] sum_offset_first_element_in_bytes The offset of the first element in the sum values tensor * @param[out] dst_ptr Pointer to the destination tensor slice. Supported data types: same as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor */ void main(void) { Image src = GC_CONVERT_TENSOR3D_TO_IMAGE_STRUCT(src); Image dst = GC_CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst); Image sum = GC_CONVERT_TENSOR3D_TO_IMAGE_STRUCT_NO_STEP(sum); // Load max value of 1D logits vector (row) vec2 sum1; load_and_unpack(sum1, sum, 0, int(gl_GlobalInvocationID.y)); vec4 sum_val1 = CONVERT(sum1.x, vec4); vec4 data1; GC_LOAD4_IMAGE(data1, src, 0, 0); vec4 res = DIV_OP(data1, sum_val1); GC_STORE4_IMAGE(res, dst, 0, 0); } #endif // SOFTMAX_LAYER_MAX #endif // DATA_TYPE_FP32