/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ layout(local_size_x = LOCAL_SIZE_X, local_size_y = LOCAL_SIZE_Y, local_size_z = LOCAL_SIZE_Z) in; #include "helpers_cs.h" #if defined(DATA_TYPE_FP16) precision mediump float; #endif // DATA_TYPE_FP16 // Common definitions #define MAX_OP(x, y) max((x), (y)) #define ADD_OP(x, y) ((x) + (y)) #define SUB_OP(x, y) ((x) - (y)) #define DIV_OP(x, y) ((x) / (y)) #define EXP_OP(x) exp((x)) const float float_min = -1.0 / 0.0; const vec4 vec4_min = vec4(float_min); #ifdef SOFTMAX_LAYER_MAX /** Identifies the maximum value across the 1st dimension. * * @note The data type must be passed at compile time using "#define DATA_TYPE_NAME". e.g. "#define DATA_TYPE_FP32" * @note In case the input is not multiple of 8 NON_MULTIPLE_OF_8 must be passed. * * @param[in] src_ptr Pointer to the source tensor slice. Supported data types: F16/F32 * @param[in] src_attrs The attributes of the source tensor * @param[out] dst_ptr Pointer to the destination tensor slice. Supported data types: same as @p src_ptr * @param[in] dst_attrs The attributes of the destination tensor * @param[in] width Input image width */ SHADER_PARAMS_DECLARATION { Tensor3DAttributes src_attrs; Tensor3DAttributes dst_attrs; uint width; }; #if defined(DATA_TYPE_FP32) TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly); TENSOR_DECLARATION(2, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly); void main(void) { ImageIterator src_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(src_attrs, src_shift); ImageIterator dst_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(dst_attrs, dst_shift); // Initialize local maximum vec4 max_val = vec4_min; // Calculate max of row uint width3 = width >> 3; for(int i = 0; i < int(width3); i++) { vec4 data[2]; data[0] = VLOAD4(vec4, src_ptr, IMAGE_OFFSET(src_iter, i << 3, 0)); data[1] = VLOAD4(vec4, src_ptr, IMAGE_OFFSET(src_iter, (i << 3) + 4, 0)); max_val = MAX_OP(data[0], max_val); max_val = MAX_OP(data[1], max_val); } #ifdef NON_MULTIPLE_OF_8 // Handle non multiple of 8 for(int i = int(width3 << 3); i < int(width); i++) { float data = LOAD(src_ptr, IMAGE_OFFSET(src_iter, i, 0)); max_val.x = MAX_OP(data, max_val.x); } #endif /* NON_MULTIPLE_OF_8 */ // Perform max reduction max_val.xy = MAX_OP(max_val.xy, max_val.zw); max_val.x = MAX_OP(max_val.x, max_val.y); // Store result STORE_CURRENT_ITEM(dst_ptr, dst_iter, max_val.x); } #elif defined(DATA_TYPE_FP16) TENSOR_DECLARATION(1, srcBuffer, uint, src_ptr, src_shift, 2, readonly); TENSOR_DECLARATION(2, dstBuffer, uint, dst_ptr, dst_shift, 2, writeonly); void main(void) { ImageIterator src_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(src_attrs, src_shift); ImageIterator dst_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(dst_attrs, dst_shift); // Initialize local maximum vec4 max_val = vec4_min; // Calculate max of row uint width3 = width >> 3; for(int i = 0; i < int(width3); i++) { vec4 data[2]; data = VLOAD4_UNPACK8_HALF(src_ptr, IMAGE_OFFSET(src_iter, i << 3, 0)); max_val = MAX_OP(data[0], max_val); max_val = MAX_OP(data[1], max_val); } #ifdef NON_MULTIPLE_OF_8 // Handle non multiple of 8 uint width1 = width >> 1 << 1; for(int i = int(width3 << 3); i < int(width1); i = i + 2) { vec2 data = LOAD_UNPACK2_HALF(src_ptr, IMAGE_OFFSET(src_iter, i, 0)); max_val.xy = MAX_OP(data, max_val.xy); } if(width != width1) { vec2 data = LOAD_UNPACK2_HALF(src_ptr, IMAGE_OFFSET(src_iter, width1, 0)); max_val.x = MAX_OP(data.x, max_val.x); } #endif /* NON_MULTIPLE_OF_8 */ // Perform max reduction max_val.xy = MAX_OP(max_val.xy, max_val.zw); max_val.x = MAX_OP(max_val.x, max_val.y); STORE_PACK2_CURRENT_ITEM_HALF(dst_ptr, dst_iter, max_val.xy); } #else // DATA_TYPE_FP32 #error Data type not supported #endif // DATA_TYPE_FP32 #elif defined(SOFTMAX_LAYER_SHIFT_EXP_SUM) /** Shifts the values of the input tensor by the max calculated in softmax_layer_max kernel, * then gets the exponent of each element as sums all elements across each row. * * @note The data type must be passed at compile time using "#define DATA_TYPE_NAME". e.g. "#define DATA_TYPE_FP32" * @note In case the input is not multiple of 8 NON_MULTIPLE_OF_8 must be passed. * * @param[in] src_ptr Pointer to the source tensor slice. Supported data types: F16/F32 * @param[in] src_attrs The attributes of the source tensor * @param[in] max_ptr Pointer to the max values tensor slice. Supported data types: same as @p src_ptr * @param[in] max_attrs The attributes of the max values tensor * @param[out] dst_ptr Pointer to the destination tensor slice. Supported data types: same as @p src_ptr * @param[in] dst_attrs The attributes of the destination tensor * @param[out] sum_ptr Pointer to the sum values tensor slice. Supported data types: same as @p src_ptr * @param[in] sum_attrs The attributes of the sum values tensor * @param[in] width Input image width */ SHADER_PARAMS_DECLARATION { Tensor3DAttributes src_attrs; Tensor3DAttributes max_attrs; Tensor3DAttributes dst_attrs; Tensor3DAttributes sum_attrs; uint width; }; #if defined(DATA_TYPE_FP32) TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly); TENSOR_DECLARATION(2, maxBuffer, float, max_ptr, max_shift, 2, readonly); TENSOR_DECLARATION(3, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly); TENSOR_DECLARATION(4, sumBuffer, float, sum_ptr, sum_shift, 2, writeonly); void main(void) { ImageIterator src_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(src_attrs, src_shift); ImageIterator dst_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(dst_attrs, dst_shift); ImageIterator max_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(max_attrs, max_shift); ImageIterator sum_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(sum_attrs, sum_shift); // Load max value of 1D logits vector (row) vec4 max_val = vec4(LOAD_CURRENT_ITEM(max_ptr, max_iter)); // Set sum vector vec4 sum1D = vec4(0); // Shift values, exp and sum uint width3 = width >> 3; for(int i = 0; i < int(width3); i++) { vec4 data[2]; data[0] = VLOAD4(vec4, src_ptr, IMAGE_OFFSET(src_iter, i << 3, 0)); data[1] = VLOAD4(vec4, src_ptr, IMAGE_OFFSET(src_iter, (i << 3) + 4, 0)); data[0] = SUB_OP(data[0], max_val); data[1] = SUB_OP(data[1], max_val); data[0] = EXP_OP(data[0]); data[1] = EXP_OP(data[1]); VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, i << 3, 0), data[0]); VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, (i << 3) + 4, 0), data[1]); sum1D = ADD_OP(sum1D, data[0]); sum1D = ADD_OP(sum1D, data[1]); } #ifdef NON_MULTIPLE_OF_8 // Handle non multiple of 8 for(int i = int(width3 << 3); i < int(width); i++) { float data = LOAD(src_ptr, IMAGE_OFFSET(src_iter, i, 0)); data = SUB_OP(data, max_val.x); data = EXP_OP(data); STORE(dst_ptr, IMAGE_OFFSET(dst_iter, i, 0), data); sum1D.x = ADD_OP(sum1D.x, data); } #endif /* NON_MULTIPLE_OF_8 */ // Perform min/max reduction sum1D.xy = ADD_OP(sum1D.xy, sum1D.zw); sum1D.x = ADD_OP(sum1D.x, sum1D.y); // Calculate and store result STORE_CURRENT_ITEM(sum_ptr, sum_iter, sum1D.x); } #elif defined(DATA_TYPE_FP16) TENSOR_DECLARATION(1, srcBuffer, uint, src_ptr, src_shift, 2, readonly); TENSOR_DECLARATION(2, maxBuffer, uint, max_ptr, max_shift, 2, readonly); TENSOR_DECLARATION(3, dstBuffer, uint, dst_ptr, dst_shift, 2, writeonly); TENSOR_DECLARATION(4, sumBuffer, uint, sum_ptr, sum_shift, 2, writeonly); void main(void) { ImageIterator src_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(src_attrs, src_shift); ImageIterator dst_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(dst_attrs, dst_shift); ImageIterator max_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(max_attrs, max_shift); ImageIterator sum_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(sum_attrs, sum_shift); // Load max value of 1D logits vector (row) vec2 datamaxinit = LOAD_UNPACK2_CURRENT_ITEM_HALF(max_ptr, max_iter); vec4 max_val = vec4(datamaxinit.x); // Set sum vector vec4 sum1D = vec4(0.f); // Shift values, exp and sum uint width3 = width >> 3; for(int i = 0; i < int(width3); i++) { vec4 data[2]; data = VLOAD4_UNPACK8_HALF(src_ptr, IMAGE_OFFSET(src_iter, i << 3, 0)); data[0] = SUB_OP(data[0], max_val); data[1] = SUB_OP(data[1], max_val); data[0] = EXP_OP(data[0]); data[1] = EXP_OP(data[1]); VSTORE4_PACK8_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, i << 3, 0), data); sum1D = ADD_OP(sum1D, data[0]); sum1D = ADD_OP(sum1D, data[1]); } #ifdef NON_MULTIPLE_OF_8 // Handle non multiple of 8 uint width1 = width >> 1 << 1; for(int i = int(width3 << 3); i < int(width1); i = i + 2) { vec2 data = LOAD_UNPACK2_HALF(src_ptr, IMAGE_OFFSET(src_iter, i, 0)); data = SUB_OP(data, max_val.xy); data = EXP_OP(data); STORE_PACK2_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, i, 0), data); sum1D.xy = ADD_OP(sum1D.xy, data); } if(width != width1) { float data = LOAD_UNPACK2_HALF(src_ptr, IMAGE_OFFSET(src_iter, width1, 0)).x; data = SUB_OP(data, max_val.x); data = EXP_OP(data); STORE_PACK2_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, width1, 0), vec2(data, 0.0)); sum1D.x = ADD_OP(sum1D.x, data); } #endif /* NON_MULTIPLE_OF_8 */ // Perform min/max reduction sum1D.xy = ADD_OP(sum1D.xy, sum1D.zw); sum1D.x = ADD_OP(sum1D.x, sum1D.y); // Calculate and store result STORE_PACK2_CURRENT_ITEM_HALF(sum_ptr, sum_iter, sum1D.xy); } #else // DATA_TYPE_FP32 #error Data type not supported #endif // DATA_TYPE_FP32 #elif defined(SOFTMAX_LAYER_NORM) /** Divides all the values of the input tensor by the sum calculated from softmax_layer_shift_exp_sum kernel. * * @note The data type must be passed at compile time using "#define DATA_TYPE_NAME". e.g. "#define DATA_TYPE_FP32" * * @param[in] src_ptr Pointer to the source tensor slice. Supported data types: F16/F32 * @param[in] src_attrs The attributes of the source tensor * @param[in] sum_ptr Pointer to the sum values tensor slice. Supported data types: same as @p src_ptr * @param[in] sum_attrs The attributes of the sum values tensor * @param[out] dst_ptr Pointer to the destination tensor slice. Supported data types: same as @p src_ptr * @param[in] dst_attrs The attributes of the destination tensor */ SHADER_PARAMS_DECLARATION { Tensor3DAttributes src_attrs; Tensor3DAttributes sum_attrs; Tensor3DAttributes dst_attrs; }; #if defined(DATA_TYPE_FP32) TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly); TENSOR_DECLARATION(2, sumBuffer, float, sum_ptr, sum_shift, 2, readonly); TENSOR_DECLARATION(3, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly); void main(void) { ImageIterator src_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(src_attrs, src_shift); ImageIterator dst_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(dst_attrs, dst_shift); ImageIterator sum_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR_NO_STEP(sum_attrs, sum_shift); // Load max value of 1D logits vector (row) vec4 sum_val = vec4(LOAD(sum_ptr, IMAGE_OFFSET(sum_iter, 0, gl_GlobalInvocationID.y))); vec4 data[2]; data[0] = VLOAD4(vec4, src_ptr, IMAGE_OFFSET(src_iter, 0, 0)); data[1] = VLOAD4(vec4, src_ptr, IMAGE_OFFSET(src_iter, 4, 0)); VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 0), DIV_OP(data[0], sum_val)); VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 4, 0), DIV_OP(data[1], sum_val)); } #elif defined(DATA_TYPE_FP16) TENSOR_DECLARATION(1, srcBuffer, uint, src_ptr, src_shift, 2, readonly); TENSOR_DECLARATION(2, sumBuffer, uint, sum_ptr, sum_shift, 2, readonly); TENSOR_DECLARATION(3, dstBuffer, uint, dst_ptr, dst_shift, 2, writeonly); void main(void) { ImageIterator src_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(src_attrs, src_shift); ImageIterator dst_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(dst_attrs, dst_shift); ImageIterator sum_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR_NO_STEP(sum_attrs, sum_shift); // Load max value of 1D logits vector (row) vec4 sum_val = vec4(LOAD_UNPACK2_HALF(sum_ptr, IMAGE_OFFSET(sum_iter, 0, gl_GlobalInvocationID.y)).x); vec4 data[2]; data = VLOAD4_UNPACK8_HALF(src_ptr, IMAGE_OFFSET(src_iter, 0, 0)); vec4 ret[2]; ret[0] = DIV_OP(data[0], sum_val); ret[1] = DIV_OP(data[1], sum_val); VSTORE4_PACK8_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 0), ret); } #else // DATA_TYPE_FP32 #error Data type not supported #endif // DATA_TYPE_FP32 #endif // SOFTMAX_LAYER_MAX