/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ layout(local_size_x = LOCAL_SIZE_X, local_size_y = LOCAL_SIZE_Y, local_size_z = LOCAL_SIZE_Z) in; #include "helpers.h" layout(std140) uniform shader_params { TENSOR3D_PARAM_DECLARATION(src1); TENSOR3D_PARAM_DECLARATION(src2); TENSOR3D_PARAM_DECLARATION(dst); }; BUFFER_DECLARATION(src1, 1, float, readonly); BUFFER_DECLARATION(src2, 2, float, readonly); BUFFER_DECLARATION(dst, 3, float, writeonly); #ifdef CROSS_MAP /** Apply cross map normalization. * * @note Alpha parameter / norm_size should be given as a preprocessor argument using "#define COEFF x" * @note BETA parameter in the normalization equation should be given as a preprocessor argument using "#define BETA x" * @note KAPPA parameter in the normalization equation should be given as a preprocessor argument using "#define KAPPA x" * @note Number of elements on the right or left side to normalize across should be given as a preprocessor argument using "#define RADIUS x" * * @param[in] src1_ptr Pointer to the first source tensor. Supported data types: F32 * @param[in] src1_stride_x Stride of the first source tensor in X dimension (in bytes) * @param[in] src1_step_x src1_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src1_stride_y Stride of the first source tensor in Y dimension (in bytes) * @param[in] src1_step_y src1_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src1_stride_z Stride of the first source tensor in Z dimension (in bytes) * @param[in] src1_step_z src1_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the first source tensor * @param[in] src2_ptr Pointer to the second source tensor. Supported data types: Same as @p src1_ptr * @param[in] src2_stride_x Stride of the second source tensor in X dimension (in bytes) * @param[in] src2_step_x src2_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src2_stride_y Stride of the second source tensor in Y dimension (in bytes) * @param[in] src2_step_y src2_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src2_stride_z Stride of the second source tensor in Z dimension (in bytes) * @param[in] src2_step_z src2_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src2_offset_first_element_in_bytes The offset of the second element in the second source tensor * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: Same as @p src1_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor */ void main(void) { Tensor3D src1 = CONVERT_TO_TENSOR3D_STRUCT(src1); Tensor3D src2 = CONVERT_TO_TENSOR3D_STRUCT(src2); Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst); float acc = 0.0; int num_of_slices = int(gl_NumWorkGroups.z * gl_WorkGroupSize.z); int current_slice = int(gl_GlobalInvocationID.z); int left_slice = max(current_slice - int(RADIUS), int(0)); int right_slice = min(current_slice + int(RADIUS), int(num_of_slices - 1)); for(int i = left_slice; i <= right_slice; i++) { acc += src2_ptr[tensor3D_offset(src2, 0, 0, i - current_slice)]; } float normalized = pow(float(KAPPA) + float(COEFF) * acc, float(BETA)); float normalized_pixel = (src1_ptr[src1.current_offset]) / normalized; dst_ptr[dst.current_offset] = normalized_pixel; } #elif defined(IN_MAP_1D) /** Apply in map normalization. * * @note Alpha parameter / norm_size should be given as a preprocessor argument using "#define COEFF x" * @note BETA parameter in the normalization equation should be given as a preprocessor argument using "#define BETA x" * @note KAPPA parameter in the normalization equation should be given as a preprocessor argument using "#define KAPPA x" * @note Number of elements on the right or left side to normalize across should be given as a preprocessor argument using "#define RADIUS x" * * @param[in] src1_ptr Pointer to the first source tensor. Supported data types: F32 * @param[in] src1_stride_x Stride of the first source tensor in X dimension (in bytes) * @param[in] src1_step_x src1_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src1_stride_y Stride of the first source tensor in Y dimension (in bytes) * @param[in] src1_step_y src1_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src1_stride_z Stride of the first source tensor in Z dimension (in bytes) * @param[in] src1_step_z src1_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the first source tensor * @param[in] src2_ptr Pointer to the second source tensor. Supported data types: Same as @p src1_ptr * @param[in] src2_stride_x Stride of the second source tensor in X dimension (in bytes) * @param[in] src2_step_x src2_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src2_stride_y Stride of the second source tensor in Y dimension (in bytes) * @param[in] src2_step_y src2_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src2_stride_z Stride of the second source tensor in Z dimension (in bytes) * @param[in] src2_step_z src2_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src2_offset_first_element_in_bytes The offset of the second element in the second source tensor * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: Same as @p src1_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor */ void main(void) { Tensor3D src1 = CONVERT_TO_TENSOR3D_STRUCT(src1); Tensor3D src2 = CONVERT_TO_TENSOR3D_STRUCT(src2); Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst); float acc = 0.0; int num_of_items_x = int(gl_NumWorkGroups.x * gl_WorkGroupSize.x); int current_pos = int(gl_GlobalInvocationID.x); int left_pos = max(current_pos - int(RADIUS), int(0)); int right_pos = min(current_pos + int(RADIUS), int(num_of_items_x + -1)); for(int i = left_pos; i <= right_pos; i++) { acc += src2_ptr[tensor3D_offset(src2, i - current_pos, 0, 0)]; } float normalized = pow(float(KAPPA) + float(COEFF) * acc, float(BETA)); float normalized_pixel = (src1_ptr[src1.current_offset]) / normalized; dst_ptr[dst.current_offset] = normalized_pixel; } #endif /*CROSS_MAP*/