/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef ARM_COMPUTE_HELPER_CS_H #define ARM_COMPUTE_HELPER_CS_H #define SHADER_PARAMS_DECLARATION \ layout(std140, binding = 0) uniform shader_params #define TENSOR_DECLARATION(location, buffer_type, type, ptr_name, shift_name, element_shift, access) \ layout(std430, binding = location) access buffer buffer_type \ { \ type ptr_name[]; \ }; \ const uint shift_name = uint(element_shift) struct VectorAttributes { uint stride_x; /**< Stride of the vector in X dimension (in bytes) */ uint step_x; /**< stride_x * number of elements along X processed per workitem (in bytes) */ uint offset_first_element_in_bytes; /**< The offset of the first element in the vector (in bytes) */ uint padding; /**< The padding to rounding up the structure to a multiple of a vec4 */ }; struct ImageAttributes { uint stride_x; /**< Stride of the image in X dimension (in bytes) */ uint step_x; /**< stride_x * number of elements along X processed per workitem (in bytes) */ uint stride_y; /**< Stride of the image in Y dimension (in bytes) */ uint step_y; /**< stride_y * number of elements along Y processed per workitem (in bytes) */ uint offset_first_element_in_bytes; /**< The offset of the first element in the image (in bytes) */ uint padding1; /**< The padding to rounding up the structure to a multiple of a vec4 */ uint padding2; /**< The padding to rounding up the structure to a multiple of a vec4 */ uint padding3; /**< The padding to rounding up the structure to a multiple of a vec4 */ }; struct Tensor3DAttributes { uint stride_x; /**< Stride of the tensor in X dimension (in bytes) */ uint step_x; /**< stride_x * number of elements along X processed per workitem (in bytes) */ uint stride_y; /**< Stride of the tensor in Y dimension (in bytes) */ uint step_y; /**< stride_y * number of elements along Y processed per workitem (in bytes) */ uint stride_z; /**< Stride of the tensor in Z dimension (in bytes) */ uint step_z; /**< stride_z * number of elements along Z processed per workitem (in bytes) */ uint offset_first_element_in_bytes; /**< The offset of the first element in the tensor (in bytes) */ uint padding; /**< The padding to rounding up the structure to a multiple of a vec4 */ }; struct VectorIterator { int current_offset_in_bytes; /**< Current offset of vector (in bytes) */ int stride_x; /**< Stride of the vector in X dimension (in bytes) */ int element_shift; /**< The number of bits to shift by for one element */ }; struct ImageIterator { int current_offset_in_bytes; /**< Current offset of image (in bytes) */ int stride_x; /**< Stride of the image in X dimension (in bytes) */ int stride_y; /**< Stride of the image in Y dimension (in bytes) */ int element_shift; /**< The number of bits to shift by for one element */ }; struct Tensor3DIterator { int current_offset_in_bytes; /**< Current offset of tensor (in bytes) */ int stride_x; /**< Stride of the tensor in X dimension (in bytes) */ int stride_y; /**< Stride of the tensor in Y dimension (in bytes) */ int stride_z; /**< Stride of the tensor in Z dimension (in bytes) */ int element_shift; /**< The number of bits to shift by for one element */ }; #define CONVERT_TO_VECTOR_ITERATOR(attrs, element_shift) \ update_vector_iter_offset(element_shift, attrs.offset_first_element_in_bytes, \ attrs.stride_x, attrs.step_x) #define CONVERT_TO_VECTOR_ITERATOR_NO_STEP(attrs, element_shift) \ update_vector_iter_offset(element_shift, attrs.offset_first_element_in_bytes, \ attrs.stride_x, uint(0)) #define CONVERT_TO_IMAGE_ITERATOR(attrs, element_shift) \ update_image_iter_offset(element_shift, attrs.offset_first_element_in_bytes, \ attrs.stride_x, attrs.step_x, attrs.stride_y, attrs.step_y) #define CONVERT_TO_IMAGE_ITERATOR_NO_STEP(attrs, element_shift) \ update_image_iter_offset(element_shift, attrs.offset_first_element_in_bytes, \ attrs.stride_x, uint(0), attrs.stride_y, uint(0)) #define CONVERT_TO_TENSOR3D_ITERATOR(attrs, element_shift) \ update_tensor3D_iter_offset(element_shift, attrs.offset_first_element_in_bytes, \ attrs.stride_x, attrs.step_x, attrs.stride_y, attrs.step_y, attrs.stride_z, attrs.step_z) #define CONVERT_TO_TENSOR3D_ITERATOR_NO_STEP(attrs, element_shift) \ update_tensor3D_iter_offset(element_shift, attrs.offset_first_element_in_bytes, \ attrs.stride_x, uint(0), attrs.stride_y, uint(0), attrs.stride_z, uint(0)) #define CONVERT_TENSOR3D_TO_IMAGE_ITERATOR(attrs, element_shift) \ update_image_from_tensor3D_iter_offset(element_shift, attrs.offset_first_element_in_bytes, \ attrs.stride_x, attrs.step_x, attrs.stride_y, attrs.step_y, attrs.stride_z, attrs.step_z) #define CONVERT_TENSOR3D_TO_IMAGE_ITERATOR_NO_STEP(attrs, element_shift) \ update_image_from_tensor3D_iter_offset(element_shift, attrs.offset_first_element_in_bytes, \ attrs.stride_x, uint(0), attrs.stride_y, uint(0), attrs.stride_z, attrs.step_z) /** Wrap vector information into a VectorIterator structure, and make the offset to be this workitem's position. * * @param[in] element_shift The number of bits to shift by for one element * @param[in] offset_first_element_in_bytes The offset of the first element in the source vector * @param[in] stride_x Stride of the vector in X dimension (in bytes) * @param[in] step_x stride_x * number of elements along X processed per workitem (in bytes) * * @return A VectorIterator object */ VectorIterator update_vector_iter_offset(uint element_shift, uint offset_first_element_in_bytes, uint stride_x, uint step_x) { VectorIterator vector_iter; vector_iter.element_shift = int(element_shift); vector_iter.stride_x = int(stride_x); vector_iter.current_offset_in_bytes = int(offset_first_element_in_bytes + gl_GlobalInvocationID.x * step_x); return vector_iter; } /** Wrap image information into an ImageIterator structure, and make the offset to be this workitem's position. * * @param[in] element_shift The number of bits to shift by for one element * @param[in] offset_first_element_in_bytes The offset of the first element in the source image * @param[in] stride_x Stride of the image in X dimension (in bytes) * @param[in] step_x stride_x * number of elements along X processed per workitem (in bytes) * @param[in] stride_y Stride of the image in Y dimension (in bytes) * @param[in] step_y stride_y * number of elements along Y processed per workitem (in bytes) * * @return An ImageIterator object */ ImageIterator update_image_iter_offset(uint element_shift, uint offset_first_element_in_bytes, uint stride_x, uint step_x, uint stride_y, uint step_y) { ImageIterator image_iter; image_iter.element_shift = int(element_shift); image_iter.stride_x = int(stride_x); image_iter.stride_y = int(stride_y); image_iter.current_offset_in_bytes = int(offset_first_element_in_bytes + gl_GlobalInvocationID.x * step_x + gl_GlobalInvocationID.y * step_y); return image_iter; } /** Wrap 3D tensor information into a Tensor3DIterator structure, and make the offset to be this workitem's position. * * @param[in] element_shift The number of bits to shift by for one element * @param[in] offset_first_element_in_bytes The offset of the first element in the source tersor * @param[in] stride_x Stride of the tersor in X dimension (in bytes) * @param[in] step_x stride_x * number of elements along X processed per workitem (in bytes) * @param[in] stride_y Stride of the tersor in Y dimension (in bytes) * @param[in] step_y stride_y * number of elements along Y processed per workitem (in bytes) * @param[in] stride_z Stride of the tersor in Z dimension (in bytes) * @param[in] step_z stride_z * number of elements along Z processed per workitem (in bytes) * * @return A 3D Tensor3DIterator object */ Tensor3DIterator update_tensor3D_iter_offset(uint element_shift, uint offset_first_element_in_bytes, uint stride_x, uint step_x, uint stride_y, uint step_y, uint stride_z, uint step_z) { Tensor3DIterator tensor_iter; tensor_iter.element_shift = int(element_shift); tensor_iter.stride_x = int(stride_x); tensor_iter.stride_y = int(stride_y); tensor_iter.stride_z = int(stride_z); tensor_iter.current_offset_in_bytes = int(offset_first_element_in_bytes + gl_GlobalInvocationID.x * step_x + gl_GlobalInvocationID.y * step_y + gl_GlobalInvocationID.z * step_z); return tensor_iter; } /** Wrap 3D tensor information into an ImageIterator structure, and make the offset to be this workitem's position. * * @param[in] element_shift The number of bits to shift by for one element * @param[in] offset_first_element_in_bytes The offset of the first element in the source tensor * @param[in] stride_x Stride of the tensor in X dimension (in bytes) * @param[in] step_x stride_x * number of elements along X processed per workitem (in bytes) * @param[in] stride_y Stride of the tensor in Y dimension (in bytes) * @param[in] step_y stride_y * number of elements along Y processed per workitem (in bytes) * @param[in] stride_z Stride of the tensor in Z dimension (in bytes) * @param[in] step_z stride_z * number of elements along Z processed per workitem (in bytes) * * @return An ImageIterator object */ ImageIterator update_image_from_tensor3D_iter_offset(uint element_shift, uint offset_first_element_in_bytes, uint stride_x, uint step_x, uint stride_y, uint step_y, uint stride_z, uint step_z) { ImageIterator image_iter; image_iter.element_shift = int(element_shift); image_iter.stride_x = int(stride_x); image_iter.stride_y = int(stride_y); image_iter.current_offset_in_bytes = int(offset_first_element_in_bytes + gl_GlobalInvocationID.x * step_x + gl_GlobalInvocationID.y * step_y + gl_GlobalInvocationID.z * step_z); return image_iter; } #define VECTOR_OFFSET(tensor_iter, x) \ uint(vector_offset_in_bytes(tensor_iter, int(x)) >> tensor_iter.element_shift) #define IMAGE_OFFSET(tensor_iter, x, y) \ uint(image_offset_in_bytes(tensor_iter, int(x), int(y)) >> tensor_iter.element_shift) #define TENSOR3D_OFFSET(tensor_iter, x, y, z) \ uint(tensor3D_offset_in_bytes(tensor_iter, int(x), int(y), int(z)) >> tensor_iter.element_shift) #define TENSOR_OFFSET_ADVANCE(tensor_iter, n) \ uint((tensor_iter.current_offset_in_bytes >> tensor_iter.element_shift) + int(n)) #define TENSOR_OFFSET_ADVANCE_IN_BYTES(tensor_iter, n) \ uint((tensor_iter.current_offset_in_bytes + int(n)) >> tensor_iter.element_shift) #define CURRENT_ITEM_OFFSET(tensor_iter) \ uint(tensor_iter.current_offset_in_bytes >> tensor_iter.element_shift) #define CURRENT_ITEM_OFFSET_IN_BYTES(tensor_iter) \ uint(tensor_iter.current_offset_in_bytes) #define TENSOR_ITERATOR_ADVANCE(tensor_iter, n) \ tensor_iter.current_offset_in_bytes += (int(n) << tensor_iter.element_shift) #define TENSOR_ITERATOR_ADVANCE_IN_BYTES(tensor_iter, n) \ tensor_iter.current_offset_in_bytes += int(n) #define SET_TENSOR_ITERATOR_OFFSET_IN_BYTES(tensor_iter, n) \ tensor_iter.current_offset_in_bytes = int(n) /** Get the offset of a VectorIterator * * @param[in] vector_iter The VectorIterator object pointed to the starting position of the buffer * @param[in] x Relative X position * * @return The relative offset of the VectorIterator object (in bytes) */ uint vector_offset_in_bytes(VectorIterator vector_iter, int x) { return uint(vector_iter.current_offset_in_bytes + x * vector_iter.stride_x); } /** Get the offset of an ImageIterator * * @param[in] vector_iter The ImageIterator object pointed to the starting position of the buffer * @param[in] x Relative X position * @param[in] y Relative Y position * * @return The relative offset of the ImageIterator object (in bytes) */ uint image_offset_in_bytes(ImageIterator image_iter, int x, int y) { return uint(image_iter.current_offset_in_bytes + x * image_iter.stride_x + y * image_iter.stride_y); } /** Get the offset of a Tensor3DIterator * * @param[in] vector_iter The Tensor3DIterator object pointed to the starting position of the buffer * @param[in] x Relative X position * @param[in] y Relative Y position * @param[in] z Relative Z position * * @return The relative offset of the Tensor3DIterator object (in bytes) */ uint tensor3D_offset_in_bytes(Tensor3DIterator tensor_iter, int x, int y, int z) { return uint(tensor_iter.current_offset_in_bytes + x * tensor_iter.stride_x + y * tensor_iter.stride_y + z * tensor_iter.stride_z); } #define LOAD(tensor_ptr, offset) tensor_ptr[offset] #define STORE(tensor_ptr, offset, data) tensor_ptr[offset] = data #define LOAD_CURRENT_ITEM(tensor_ptr, tensor_iter) tensor_ptr[CURRENT_ITEM_OFFSET(tensor_iter)] #define STORE_CURRENT_ITEM(tensor_ptr, tensor_iter, data) tensor_ptr[CURRENT_ITEM_OFFSET(tensor_iter)] = data #define VLOAD2(return_type, tensor_ptr, offset) \ return_type(LOAD(tensor_ptr, offset), \ LOAD(tensor_ptr, (offset) + uint(1))) #define VSTORE2(tensor_ptr, offset, data) \ STORE(tensor_ptr, offset, data[0]); \ STORE(tensor_ptr, (offset) + uint(1), data[1]) #define VLOAD2_CURRENT_ITEM(return_type, tensor_ptr, tensor_iter) VLOAD2(return_type, tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter)) #define VSTORE2_CURRENT_ITEM(tensor_ptr, tensor_iter, data) VSTORE2(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter), data) #define VLOAD3(return_type, tensor_ptr, offset) \ return_type(LOAD(tensor_ptr, offset), \ LOAD(tensor_ptr, (offset) + uint(1)), \ LOAD(tensor_ptr, (offset) + uint(2))) #define VSTORE3(tensor_ptr, offset, data) \ STORE(tensor_ptr, offset, data[0]); \ STORE(tensor_ptr, (offset) + uint(1), data[1]); \ STORE(tensor_ptr, (offset) + uint(2), data[2]) #define VLOAD3_CURRENT_ITEM(return_type, tensor_ptr, tensor_iter) VLOAD3(return_type, tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter)) #define VSTORE3_CURRENT_ITEM(tensor_ptr, tensor_iter, data) VSTORE3(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter), data) #define VLOAD4(return_type, tensor_ptr, offset) \ return_type(LOAD(tensor_ptr, offset), \ LOAD(tensor_ptr, (offset) + uint(1)), \ LOAD(tensor_ptr, (offset) + uint(2)), \ LOAD(tensor_ptr, (offset) + uint(3))) #define VSTORE4(tensor_ptr, offset, data) \ STORE(tensor_ptr, offset, data[0]); \ STORE(tensor_ptr, (offset) + uint(1), data[1]); \ STORE(tensor_ptr, (offset) + uint(2), data[2]); \ STORE(tensor_ptr, (offset) + uint(3), data[3]) #define VLOAD4_CURRENT_ITEM(return_type, tensor_ptr, tensor_iter) VLOAD4(return_type, tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter)) #define VSTORE4_CURRENT_ITEM(tensor_ptr, tensor_iter, data) VSTORE4(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter), data) #define VLOAD5(return_type, tensor_ptr, offset) \ return_type(LOAD(tensor_ptr, offset), \ LOAD(tensor_ptr, (offset) + uint(1)), \ LOAD(tensor_ptr, (offset) + uint(2)), \ LOAD(tensor_ptr, (offset) + uint(3)), \ LOAD(tensor_ptr, (offset) + uint(4))) #define VSTORE5(tensor_ptr, offset, data) \ STORE(tensor_ptr, offset, data[0]); \ STORE(tensor_ptr, (offset) + uint(1), data[1]); \ STORE(tensor_ptr, (offset) + uint(2), data[2]); \ STORE(tensor_ptr, (offset) + uint(3), data[3]); \ STORE(tensor_ptr, (offset) + uint(4), data[4]) #define VLOAD5_CURRENT_ITEM(return_type, tensor_ptr, tensor_iter) VLOAD5(return_type, tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter)) #define VSTORE5_CURRENT_ITEM(tensor_ptr, tensor_iter, data) VSTORE5(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter), data) /** Converting the vec4 object to 4 half-precision (16-bits) floating point values and packing into a uvec2 object * * @param[in] data The vec4 object to be packed * * @return The packed uvec2 object */ highp uvec2 pack4_half(mediump vec4 data) { return uvec2(packHalf2x16(data.xy), packHalf2x16(data.zw)); } /** Unpacking the uvec2 object to 4 half-precision (16-bits) floating point values and converting to a vec4 object * * @param[in] packed_data The uvec2 object to be unpacked * * @return The unpacked vec4 object */ mediump vec4 unpack4_half(highp uvec2 packed_data) { return vec4(unpackHalf2x16(packed_data.x), unpackHalf2x16(packed_data.y)); } /** Unpacking the uvec3 object to 6 half-precision (16-bits) floating point values and converting to a vec2[3] object * * @param[in] packed_data The uvec3 object to be unpacked * * @return The unpacked vec2[3] object */ mediump vec2[3] unpack6_half(highp uvec3 packed_data) { return vec2[3](unpackHalf2x16(packed_data[0]), unpackHalf2x16(packed_data[1]), unpackHalf2x16(packed_data[2])); } /** Converting the vec4[2] object to 8 half-precision (16-bits) floating point values and packing into a uvec4 object * * @param[in] data The vec4[2] object to be packed * * @return The packed uvec4 object */ highp uvec4 pack8_half(mediump vec4 data[2]) { return uvec4(packHalf2x16(data[0].xy), packHalf2x16(data[0].zw), packHalf2x16(data[1].xy), packHalf2x16(data[1].zw)); } /** Unpacking the uvec4 object to 8 half-precision (16-bits) floating point values and converting to a vec4[2] object * * @param[in] packed_data The uvec4 object to be unpacked * * @return The unpacked vec4[2] object */ mediump vec4[2] unpack8_half(highp uvec4 packed_data) { return vec4[2](vec4(unpackHalf2x16(packed_data.x), unpackHalf2x16(packed_data.y)), vec4(unpackHalf2x16(packed_data.z), unpackHalf2x16(packed_data.w))); } /** Unpacking the uvec2[3] object to 12 half-precision (16-bits) floating point values and converting to a vec4[3] object * * @param[in] packed_data The uvec2[3] object to be unpacked * * @return The unpacked vec4[3] object */ mediump vec4[3] unpack12_half(highp uvec2[3] packed_data) { return vec4[3](vec4(unpackHalf2x16(packed_data[0].x), unpackHalf2x16(packed_data[0].y)), vec4(unpackHalf2x16(packed_data[1].x), unpackHalf2x16(packed_data[1].y)), vec4(unpackHalf2x16(packed_data[2].x), unpackHalf2x16(packed_data[2].y))); } // For half-precision (16-bits) floating point packed into a "uint" element #define LOAD_UNPACK2_HALF(tensor_ptr, offset) unpackHalf2x16(uint(LOAD(tensor_ptr, offset))) #define STORE_PACK2_HALF(tensor_ptr, offset, data) STORE(tensor_ptr, offset, packHalf2x16(data)) #define LOAD_UNPACK2_CURRENT_ITEM_HALF(tensor_ptr, tensor_iter) LOAD_UNPACK2_HALF(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter)) #define STORE_PACK2_CURRENT_ITEM_HALF(tensor_ptr, tensor_iter, data) STORE_PACK2_HALF(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter), data) #define VLOAD2_UNPACK4_HALF(tensor_ptr, offset) unpack4_half(VLOAD2(uvec2, tensor_ptr, offset)) #define VSTORE2_PACK4_HALF(tensor_ptr, offset, data) VSTORE2(tensor_ptr, offset, pack4_half(data)) #define VLOAD2_UNPACK4_CURRENT_ITEM_HALF(tensor_ptr, tensor_iter) VLOAD2_UNPACK4_HALF(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter)) #define VSTORE2_PACK4_CURRENT_ITEM_HALF(tensor_ptr, tensor_iter, data) VSTORE2_PACK4_HALF(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter), data) #define VLOAD3_UNPACK6_HALF(tensor_ptr, offset) unpack6_half(VLOAD3(uvec3, tensor_ptr, offset)) #define VLOAD3_UNPACK6_CURRENT_ITEM_HALF(tensor_ptr, tensor_iter) VLOAD3_UNPACK6_HALF(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter)) #define VLOAD4_UNPACK8_HALF(tensor_ptr, offset) unpack8_half(VLOAD4(uvec4, tensor_ptr, offset)) #define VSTORE4_PACK8_HALF(tensor_ptr, offset, data) VSTORE4(tensor_ptr, offset, pack8_half(data)) #define VLOAD4_UNPACK8_CURRENT_ITEM_HALF(tensor_ptr, tensor_iter) VLOAD4_UNPACK8_HALF(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter)) #define VSTORE4_PACK8_CURRENT_ITEM_HALF(tensor_ptr, tensor_iter, data) VSTORE4_PACK8_HALF(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter), data) // For half-precision (16-bits) floating point packed into a "uvec2" element #define LOAD_UNPACK4_HALF(tensor_ptr, offset) unpack4_half(uvec2(LOAD(tensor_ptr, offset))) #define STORE_PACK4_HALF(tensor_ptr, offset, data) STORE(tensor_ptr, offset, pack4_half(data)) #define LOAD_UNPACK4_CURRENT_ITEM_HALF(tensor_ptr, tensor_iter) LOAD_UNPACK4_HALF(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter)) #define STORE_PACK4_CURRENT_ITEM_HALF(tensor_ptr, tensor_iter, data) STORE_PACK4_HALF(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter), data) #define VLOAD2_UNPACK8_HALF(tensor_ptr, offset) unpack8_half(VLOAD2(uvec4, tensor_ptr, offset)) #define VSTORE2_PACK8_HALF(tensor_ptr, offset, data) VSTORE2(tensor_ptr, offset, pack8_half(data)) #define VLOAD2_UNPACK8_CURRENT_ITEM_HALF(tensor_ptr, tensor_iter) VLOAD2_UNPACK8_HALF(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter)) #define VSTORE2_PACK8_CURRENT_ITEM_HALF(tensor_ptr, tensor_iter, data) VSTORE2_PACK8_HALF(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter), data) #define VLOAD3_UNPACK12_HALF(tensor_ptr, offset) unpack12_half(VLOAD3(uvec2[3], tensor_ptr, offset)) #define VLOAD3_UNPACK12_CURRENT_ITEM_HALF(tensor_ptr, tensor_iter) VLOAD3_UNPACK12_HALF(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter)) // For half-precision (16-bits) floating point packed into a "uvec4" element #define LOAD_UNPACK8_HALF(tensor_ptr, offset) unpack8_half(uvec4(LOAD(tensor_ptr, offset))) #define STORE_PACK8_HALF(tensor_ptr, offset, data) STORE(tensor_ptr, offset, pack8_half(data)) #define LOAD_UNPACK8_CURRENT_ITEM_HALF(tensor_ptr, tensor_iter) LOAD_UNPACK8_HALF(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter)) #define STORE_PACK8_CURRENT_ITEM_HALF(tensor_ptr, tensor_iter, data) STORE_PACK8_HALF(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter), data) /** Converting the uvec4 object to 4 low-precision uint values and packing into a uint object * * @param[in] data The uvec4 object to be packed * * @return The packed uint object */ highp uint pack4_u8(lowp uvec4 data) { highp uint r = uint(0); for(int i = 0; i < 4; i++) { r |= data[i] << uint(i * 8); } return r; } /** Unpacking the uint object to 4 low-precision uint values and converting to a uvec4 object * * @param[in] packed_data The uint object to be unpacked * * @return The unpacked uvec4 object */ lowp uvec4 unpack4_u8(highp uint packed_data) { lowp uvec4 uvec; for(int i = 0; i < 4; i++) { uvec[i] = (packed_data >> uint(i * 8)) & uint(0xFF); } return uvec; } #define LOAD_UNPACK4_U8(tensor_ptr, offset) unpack4_u8(uint(LOAD(tensor_ptr, offset))) #define STORE_PACK4_U8(tensor_ptr, offset, data) STORE(tensor_ptr, offset, pack4_u8(data)) #define LOAD_UNPACK4_CURRENT_ITEM_U8(tensor_ptr, tensor_iter) LOAD_UNPACK4_U8(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter)) #define STORE_PACK4_CURRENT_ITEM_U8(tensor_ptr, tensor_iter, data) STORE_PACK4_U8(tensor_ptr, CURRENT_ITEM_OFFSET(tensor_iter), data) #endif // ARM_COMPUTE_HELPER_CS_H