/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ layout(local_size_x = LOCAL_SIZE_X, local_size_y = LOCAL_SIZE_Y, local_size_z = LOCAL_SIZE_Z) in; #include "helpers_cs.h" #if defined(DATA_TYPE_FP16) precision mediump float; #endif // DATA_TYPE_FP16 #if defined(DATA_TYPE_FP32) #ifdef GEMM_TRANSPOSE1xW /** This OpenGL ES kernel computes the "vector" 1x4 transposition of input matrix * * @param[in] src_ptr Pointer to the source matrix. Supported data types: F32 * @param[in] src_attrs The attributes of the source matrix * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr * @param[in] dst_attrs The attributes of the destination matrix */ SHADER_PARAMS_DECLARATION { ImageAttributes src_attrs; ImageAttributes dst_attrs; }; TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly); TENSOR_DECLARATION(2, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly); void main(void) { /* Compute address for Matrix B - source */ ImageIterator src_iter = CONVERT_TO_IMAGE_ITERATOR(src_attrs, src_shift); ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(dst_attrs, dst_shift); /* Compute address for Matrix B transposed - destination. X and Y are swapped */ TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, gl_GlobalInvocationID.y * uint(16) + gl_GlobalInvocationID.x * dst_attrs.stride_y); vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src_ptr, src_iter); VSTORE4_CURRENT_ITEM(dst_ptr, dst_iter, b0); } #endif /* GEMM_TRANSPOSE1xW */ #ifdef GEMM_INTERLEAVE4x4 /** This OpenGLES kernel reshapes the input matrix interleaving the values * * @param[in] src_ptr Pointer to the source matrix. Supported data types: F32 * @param[in] src_attrs The attributes of the source matrix * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr * @param[in] dst_attrs The attributes of the destination matrix */ SHADER_PARAMS_DECLARATION { ImageAttributes src_attrs; ImageAttributes dst_attrs; }; TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly); TENSOR_DECLARATION(2, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly); void main(void) { /* Compute source and destination addresses */ ImageIterator src_iter = CONVERT_TO_IMAGE_ITERATOR(src_attrs, src_shift); ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift); int i; int j; for(i = 0; i < 4; ++i) { for(j = 0; j < 4; ++j) { float res = LOAD(src_ptr, IMAGE_OFFSET(src_iter, i, j)); STORE(dst_ptr, TENSOR_OFFSET_ADVANCE(dst_iter, (i * 4 + j)), res); } } } #endif /* GEMM_INTERLEAVE4x4 */ #ifdef GEMM_ACCUMULATE_BIASES /** This kernel accumulates each row with the biases vector * * @param[in, out] accum_ptr Pointer to the accumulate tensor. Supported data type: F32 * @param[in] accum_attrs The attributes of the accumulate tensor * @param[in] biases_ptr Pointer to the biases vector. Same as @p accum_ptr * @param[in] biases_attrs The attributes of the biases tensor */ SHADER_PARAMS_DECLARATION { ImageAttributes accum_attrs; VectorAttributes biases_attrs; }; TENSOR_DECLARATION(1, accumBuffer, float, accum_ptr, accum_shift, 2, restrict); TENSOR_DECLARATION(2, biasesBuffer, float, biases_ptr, biases_shift, 2, readonly); void main(void) { ImageIterator accum_iter = CONVERT_TO_IMAGE_ITERATOR(accum_attrs, accum_shift); VectorIterator biases_iter = CONVERT_TO_VECTOR_ITERATOR(biases_attrs, biases_shift); for(int i = 0; i < 16; ++i) { float accum_value = LOAD(accum_ptr, TENSOR_OFFSET_ADVANCE(accum_iter, i)); float biases_value = LOAD(biases_ptr, TENSOR_OFFSET_ADVANCE(biases_iter, i)); accum_value = biases_value + accum_value; // Store result in the accummulate buffer STORE(accum_ptr, TENSOR_OFFSET_ADVANCE(accum_iter, i), accum_value); } } #endif /* GEMM_ACCUMULATE_BIASES */ #ifdef GEMM_MM_INTERLEAVED_TRANSPOSED /* unvalidate */ /** This OpenGL ES kernel is optimised for Midgard. It computes the matrix multiplication between matrix A (src0) and matrix B (src1) * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication * * @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha * * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32 * @param[in] src0_attrs The attributes of the source matrix * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr * @param[in] src1_attrs The attributes of the source matrix * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr * @param[in] dst_attrs The attributes of the destination matrix */ SHADER_PARAMS_DECLARATION { ImageAttributes src0_attrs; ImageAttributes src1_attrs; ImageAttributes dst_attrs; }; TENSOR_DECLARATION(1, src0Buffer, float, src0_ptr, src0_shift, 2, readonly); TENSOR_DECLARATION(2, src1Buffer, float, src1_ptr, src1_shift, 2, readonly); TENSOR_DECLARATION(3, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly); void main() { ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift); ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift); ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift); /* Compute address for matrix A and B */ TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * (src0_attrs.stride_y)); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(gl_GlobalInvocationID.x) * (src1_attrs.stride_y)); /* Compute end row address for matrix B */ int end_row_mtx_b = int(TENSOR_OFFSET_ADVANCE(src1_iter, COLS_B)); /* Reset accumulators */ vec4 c00 = vec4(0.0f); vec4 c10 = vec4(0.0f); vec4 c20 = vec4(0.0f); vec4 c30 = vec4(0.0f); // FIXME: loop unrolling really needed for GLES? for(; int(CURRENT_ITEM_OFFSET(src1_iter)) <= (end_row_mtx_b - 8); TENSOR_ITERATOR_ADVANCE(src0_iter, 8), TENSOR_ITERATOR_ADVANCE(src1_iter, 8)) { /* Load values from matrix A (interleaved) and matrix B (transposed) */ vec4 a0 = VLOAD4_CURRENT_ITEM(vec4, src0_ptr, src0_iter); vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter); c00 += vec4(a0.x) * b0; c10 += vec4(a0.y) * b0; c20 += vec4(a0.z) * b0; c30 += vec4(a0.w) * b0; /* Load values from matrix A (interleaved) and matrix B (transposed) */ a0 = VLOAD4(vec4, src0_ptr, TENSOR_OFFSET_ADVANCE(src0_iter, 4)); b0 = VLOAD4(vec4, src1_ptr, TENSOR_OFFSET_ADVANCE(src1_iter, 4)); c00 += vec4(a0.x) * b0; c10 += vec4(a0.y) * b0; c20 += vec4(a0.z) * b0; c30 += vec4(a0.w) * b0; } for(; int(CURRENT_ITEM_OFFSET(src1_iter)) < end_row_mtx_b; TENSOR_ITERATOR_ADVANCE(src0_iter, 4), TENSOR_ITERATOR_ADVANCE(src1_iter, 4)) { /* Load values from matrix A (interleaved) and matrix B (transposed) */ vec4 a0 = VLOAD4_CURRENT_ITEM(vec4, src0_ptr, src0_iter); vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter); c00 += vec4(a0.x) * b0; c10 += vec4(a0.y) * b0; c20 += vec4(a0.z) * b0; c30 += vec4(a0.w) * b0; } /* Multiply by the weight of matrix product */ c00 = c00 * vec4(ALPHA); c10 = c10 * vec4(ALPHA); c20 = c20 * vec4(ALPHA); c30 = c30 * vec4(ALPHA); /* Store 4x4 block */ VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 0), c00); VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 1), c10); VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 2), c20); VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 3), c30); } #endif /* GEMM_MM_INTERLEAVED_TRANSPOSED */ #ifdef GEMM_MM_FLOATING_POINT /** This OpenGL ES kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1) * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication * * @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y. * @note The number of matrix A columns must be passed at compile time using -DCOLS_A. * @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha * * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32 * @param[in] src0_attrs The attributes of the source matrix * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr * @param[in] src1_attrs The attributes of the source matrix * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr * @param[in] dst_attrs The attributes of the destination matrix */ SHADER_PARAMS_DECLARATION { ImageAttributes src0_attrs; ImageAttributes src1_attrs; ImageAttributes dst_attrs; }; TENSOR_DECLARATION(1, src0Buffer, float, src0_ptr, src0_shift, 2, readonly); TENSOR_DECLARATION(2, src1Buffer, float, src1_ptr, src1_shift, 2, readonly); TENSOR_DECLARATION(3, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly); void main() { ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift); ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift); ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift); int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X); /* Compute the address for the vector A and matrix B */ TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * (src0_attrs.stride_y) * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y)); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, idx * 4); /* Compute end row address for matrix A */ int end_row_vec_a = int(TENSOR_OFFSET_ADVANCE_IN_BYTES(src0_iter, COLS_A * 4)); /* Reset accumulators */ vec4 acc0 = vec4(0.0f); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 vec4 acc1 = vec4(0.0f); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 vec4 acc2 = vec4(0.0f); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 vec4 acc3 = vec4(0.0f); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 for(; int(CURRENT_ITEM_OFFSET(src0_iter)) <= (end_row_vec_a - 2); TENSOR_ITERATOR_ADVANCE(src0_iter, 2), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(2) * src1_attrs.stride_y)) { vec2 a0 = VLOAD2_CURRENT_ITEM(vec2, src0_ptr, src0_iter); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 vec2 a1 = VLOAD2(vec2, src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 vec2 a2 = VLOAD2(vec2, src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 vec2 a3 = VLOAD2(vec2, src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter); vec4 b1 = VLOAD4(vec4, src1_ptr, IMAGE_OFFSET(src1_iter, 0, 1)); acc0 += b0 * vec4(a0.x); acc0 += b1 * vec4(a0.y); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 acc1 += b0 * vec4(a1.x); acc1 += b1 * vec4(a1.y); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 acc2 += b0 * vec4(a2.x); acc2 += b1 * vec4(a2.y); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 acc3 += b0 * vec4(a3.x); acc3 += b1 * vec4(a3.y); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 } for(; int(CURRENT_ITEM_OFFSET(src0_iter)) < end_row_vec_a; TENSOR_ITERATOR_ADVANCE(src0_iter, 1), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, src1_attrs.stride_y)) { // Load values from matrix A float a0 = LOAD_CURRENT_ITEM(src0_ptr, src0_iter); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 float a1 = LOAD(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1)); //float a1 = 0; #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 float a2 = LOAD(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 float a3 = LOAD(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter); acc0 += b0 * vec4(a0); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 acc1 += b0 * vec4(a1); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 acc2 += b0 * vec4(a2); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 acc3 += b0 * vec4(a3); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 } /* Multiply by the weight of vector-matrix product */ acc0 = acc0 * vec4(ALPHA); VSTORE4_CURRENT_ITEM(dst_ptr, dst_iter, acc0); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 acc1 = acc1 * vec4(ALPHA); VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 1), acc1); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 acc2 = acc2 * vec4(ALPHA); VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 2), acc2); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 acc3 = acc3 * vec4(ALPHA); VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 3), acc3); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 } #endif /* GEMM_MM_FLOATING_POINT */ #ifdef GEMM_MM_FLOATING_POINT_BIFROST /** This OpenGL ES kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1) * Matrix A and matrix B in case both matrices have not been reshaped * * @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y. * @note The number of matrix A columns must be passed at compile time using -DCOLS_A. * @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha * * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32 * @param[in] src0_attrs The attributes of the source matrix * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr * @param[in] src1_attrs The attributes of the source matrix * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr * @param[in] dst_attrs The attributes of the destination matrix */ SHADER_PARAMS_DECLARATION { ImageAttributes src0_attrs; ImageAttributes src1_attrs; ImageAttributes dst_attrs; }; TENSOR_DECLARATION(1, src0Buffer, float, src0_ptr, src0_shift, 2, readonly); TENSOR_DECLARATION(2, src1Buffer, float, src1_ptr, src1_shift, 2, readonly); TENSOR_DECLARATION(3, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly); void main() { ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift); ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift); ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift); int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X); /* Compute the address for the vector A and matrix B */ TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * (src0_attrs.stride_y) * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y)); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, idx * 4); /* Reset accumulators */ vec4 acc0 = vec4(0.0f); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 vec4 acc1 = vec4(0.0f); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 vec4 acc2 = vec4(0.0f); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 vec4 acc3 = vec4(0.0f); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 // A and B src indices get incremented at the same time. int i = 0; for(; i <= (COLS_A - 4); i += 4) { // Load values from matrix A and matrix B vec4 a0 = VLOAD4_CURRENT_ITEM(vec4, src0_ptr, src0_iter); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 vec4 a1 = VLOAD4(vec4, src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 vec4 a2 = VLOAD4(vec4, src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 vec4 a3 = VLOAD4(vec4, src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, src1_attrs.stride_y); // Multiply and accumulate acc0 += b0 * vec4(a0.x); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 acc1 += b0 * vec4(a1.x); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 acc2 += b0 * vec4(a2.x); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 acc3 += b0 * vec4(a3.x); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 // Load values from matrix B b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, src1_attrs.stride_y); // Multiply and accumulate acc0 += b0 * vec4(a0.y); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 acc1 += b0 * vec4(a1.y); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 acc2 += b0 * vec4(a2.y); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 acc3 += b0 * vec4(a3.y); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 // Load values from matrix B b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, src1_attrs.stride_y); // Multiply and accumulate acc0 += b0 * vec4(a0.z); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 acc1 += b0 * vec4(a1.z); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 acc2 += b0 * vec4(a2.z); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 acc3 += b0 * vec4(a3.z); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 // Load values from matrix B b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, src1_attrs.stride_y); // Multiply and accumulate acc0 += b0 * vec4(a0.w); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 acc1 += b0 * vec4(a1.w); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 acc2 += b0 * vec4(a2.w); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 acc3 += b0 * vec4(a3.w); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 TENSOR_ITERATOR_ADVANCE(src0_iter, 4); } for(; i < COLS_A; ++i) { // Load values from matrix A float a0 = LOAD_CURRENT_ITEM(src0_ptr, src0_iter); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 float a1 = LOAD(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 float a2 = LOAD(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 float a3 = LOAD(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter); // Multiply and accumulate acc0 += b0 * vec4(a0); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 acc1 += b0 * vec4(a1); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 acc2 += b0 * vec4(a2); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 acc3 += b0 * vec4(a3); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, src1_attrs.stride_y); TENSOR_ITERATOR_ADVANCE(src0_iter, 1); } /* Multiply by the weight of vector-matrix product */ acc0 = acc0 * vec4(ALPHA); VSTORE4_CURRENT_ITEM(dst_ptr, dst_iter, acc0); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 acc1 = acc1 * vec4(ALPHA); VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 1), acc1); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 acc2 = acc2 * vec4(ALPHA); VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 2), acc2); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 acc3 = acc3 * vec4(ALPHA); VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 3), acc3); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 } #endif /* GEMM_MM_FLOATING_POINT_BIFROST */ #ifdef GEMM_MATRIXADDITION /** This OpenGL ES kernel performs the in-place matrix addition between 2 matrices taking into account that the second matrix might be weighted by a scalar value beta: * * @attention The beta's value need to be passed at compile time using BETA * * @param[in] src_ptr Pointer to the source matrix. Supported data types: F32 * @param[in] src_attrs The attributes of the source matrix * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr * @param[in] dst_attrs The attributes of the destination matrix */ SHADER_PARAMS_DECLARATION { ImageAttributes src_attrs; ImageAttributes dst_attrs; }; TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly); TENSOR_DECLARATION(2, dstBuffer, float, dst_ptr, dst_shift, 2, restrict); void main(void) { /* Compute source and destination addresses */ ImageIterator src_iter = CONVERT_TO_IMAGE_ITERATOR(src_attrs, src_shift); ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift); /* Load values from A x B */ vec4 alpha_ab = VLOAD4_CURRENT_ITEM(vec4, dst_ptr, dst_iter); vec4 c = VLOAD4_CURRENT_ITEM(vec4, src_ptr, src_iter); /* Computes alpha * axb + beta * c */ vec4 out1 = alpha_ab + vec4(float(BETA) * c); /* Store final result in axb matrix */ VSTORE4_CURRENT_ITEM(dst_ptr, dst_iter, out1); } #endif /* GEMM_MATRIXADDITION */ #elif defined(DATA_TYPE_FP16) #ifdef GEMM_TRANSPOSE1xW /** This OpenGL ES kernel computes the "vector" 1x8 transposition of input matrix * * @param[in] src_ptr Pointer to the source matrix. Supported data types: F16 * @param[in] src_attrs The attributes of the source matrix * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr * @param[in] dst_attrs The attributes of the destination matrix */ SHADER_PARAMS_DECLARATION { ImageAttributes src_attrs; ImageAttributes dst_attrs; }; TENSOR_DECLARATION(1, srcBuffer, uvec4, src_ptr, src_shift, 4, readonly); TENSOR_DECLARATION(2, dstBuffer, uvec4, dst_ptr, dst_shift, 4, writeonly); void main(void) { /* Compute address for Matrix B - source */ ImageIterator src_iter = CONVERT_TO_IMAGE_ITERATOR(src_attrs, src_shift); ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(dst_attrs, dst_shift); /* Compute address for Matrix B transposed - destination. X and Y are swapped */ TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, gl_GlobalInvocationID.y * uint(16) + gl_GlobalInvocationID.x * dst_attrs.stride_y); STORE_CURRENT_ITEM(dst_ptr, dst_iter, LOAD_CURRENT_ITEM(src_ptr, src_iter)); } #endif /* GEMM_TRANSPOSE1xW */ #ifdef GEMM_INTERLEAVE4x4 /** This OpenGLES kernel reshapes the input matrix interleaving the values * * @param[in] src_ptr Pointer to the source matrix. Supported data types: F16 * @param[in] src_attrs The attributes of the source matrix * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr * @param[in] dst_attrs The attributes of the destination matrix */ SHADER_PARAMS_DECLARATION { ImageAttributes src_attrs; ImageAttributes dst_attrs; }; TENSOR_DECLARATION(1, srcBuffer, uvec4, src_ptr, src_shift, 4, readonly); TENSOR_DECLARATION(2, dstBuffer, uvec4, dst_ptr, dst_shift, 4, writeonly); void main(void) { /* Compute source and destination addresses */ ImageIterator src_iter = CONVERT_TO_IMAGE_ITERATOR(src_attrs, src_shift); ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift); vec4 s0[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(src_ptr, src_iter); vec4 s1[2] = LOAD_UNPACK8_HALF(src_ptr, IMAGE_OFFSET(src_iter, 0, 1)); vec4 s2[2] = LOAD_UNPACK8_HALF(src_ptr, IMAGE_OFFSET(src_iter, 0, 2)); vec4 s3[2] = LOAD_UNPACK8_HALF(src_ptr, IMAGE_OFFSET(src_iter, 0, 3)); vec4 s[2]; s[0] = vec4(s0[0].x, s1[0].x, s2[0].x, s3[0].x); s[1] = vec4(s0[0].y, s1[0].y, s2[0].y, s3[0].y); STORE_PACK8_CURRENT_ITEM_HALF(dst_ptr, dst_iter, s); s[0] = vec4(s0[0].z, s1[0].z, s2[0].z, s3[0].z); s[1] = vec4(s0[0].w, s1[0].w, s2[0].w, s3[0].w); STORE_PACK8_HALF(dst_ptr, TENSOR_OFFSET_ADVANCE(dst_iter, 1u), s); s[0] = vec4(s0[1].x, s1[1].x, s2[1].x, s3[1].x); s[1] = vec4(s0[1].y, s1[1].y, s2[1].y, s3[1].y); STORE_PACK8_HALF(dst_ptr, TENSOR_OFFSET_ADVANCE(dst_iter, 2u), s); s[0] = vec4(s0[1].z, s1[1].z, s2[1].z, s3[1].z); s[1] = vec4(s0[1].w, s1[1].w, s2[1].w, s3[1].w); STORE_PACK8_HALF(dst_ptr, TENSOR_OFFSET_ADVANCE(dst_iter, 3u), s); } #endif /* GEMM_INTERLEAVE4x4 */ #ifdef GEMM_MM_FLOATING_POINT /** This OpenGL ES kernel computes the matrix multiplication between matrix A(src0) and matrix B(src1) * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_16bit and @ref gemm_transpose1x4 before running the matrix multiplication * * @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha * * @param[in] src0_ptr Pointer to the source matrix.Supported data types: F16 * @param[in] src0_attrs The attributes of the source matrix * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr * @param[in] src1_attrs The attributes of the source matrix * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr * @param[in] dst_attrs The attributes of the destination matrix */ SHADER_PARAMS_DECLARATION { ImageAttributes src0_attrs; ImageAttributes src1_attrs; ImageAttributes dst_attrs; }; #if defined(MM_PROCESS_4X) TENSOR_DECLARATION(1, src0Buffer, uint, src0_ptr, src0_shift, 2, readonly); TENSOR_DECLARATION(2, src1Buffer, uvec2, src1_ptr, src1_shift, 3, readonly); TENSOR_DECLARATION(3, dstBuffer, uvec2, dst_ptr, dst_shift, 3, writeonly); void main() { ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift); ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift); ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift); int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X); /* Compute the address for the vector A and matrix B */ TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * src0_attrs.stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y)); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(idx) * src1_attrs.stride_x); /* Compute end row address for matrix A */ uint end_row_vec_a = uint(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) + uint(COLS_A << 1); /* Reset accumulators */ vec4 acc0 = vec4(0.0f); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 vec4 acc1 = vec4(0.0f); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 vec4 acc2 = vec4(0.0f); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 vec4 acc3 = vec4(0.0f); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 for(; int(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) <= int(end_row_vec_a - uint(4)); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, 2 * 2), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(2) * src1_attrs.stride_y)) { vec2 a0 = LOAD_UNPACK2_CURRENT_ITEM_HALF(src0_ptr, src0_iter); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 vec2 a1 = LOAD_UNPACK2_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 vec2 a2 = LOAD_UNPACK2_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 vec2 a3 = LOAD_UNPACK2_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 vec4 b0 = LOAD_UNPACK4_CURRENT_ITEM_HALF(src1_ptr, src1_iter); vec4 b1 = LOAD_UNPACK4_HALF(src1_ptr, IMAGE_OFFSET(src1_iter, 0, 1)); acc0 += b0 * vec4(a0.x); acc0 += b1 * vec4(a0.y); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 acc1 += b0 * vec4(a1.x); acc1 += b1 * vec4(a1.y); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 acc2 += b0 * vec4(a2.x); acc2 += b1 * vec4(a2.y); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 acc3 += b0 * vec4(a3.x); acc3 += b1 * vec4(a3.y); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 } for(; int(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) < int(end_row_vec_a); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, 2 * 2), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, src1_attrs.stride_y)) { vec2 a0 = LOAD_UNPACK2_CURRENT_ITEM_HALF(src0_ptr, src0_iter); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 vec2 a1 = LOAD_UNPACK2_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 vec2 a2 = LOAD_UNPACK2_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 vec2 a3 = LOAD_UNPACK2_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 vec4 b0 = LOAD_UNPACK4_CURRENT_ITEM_HALF(src1_ptr, src1_iter); acc0 += b0 * (a0.x); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 acc1 += b0 * (a1.x); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 acc2 += b0 * (a2.x); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 acc3 += b0 * (a3.x); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 } /* Multiply by the weight of vector-matrix product */ acc0 = acc0 * vec4(ALPHA); STORE_PACK4_CURRENT_ITEM_HALF(dst_ptr, dst_iter, acc0); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 STORE_PACK4_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 1), acc1); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 STORE_PACK4_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 2), acc2); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 STORE_PACK4_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 3), acc3); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 } #elif defined(MM_PROCESS_4X_OPTIMIZED) /* PROCESS_4X */ TENSOR_DECLARATION(1, src0Buffer, uvec4, src0_ptr, src0_shift, 4, readonly); TENSOR_DECLARATION(2, src1Buffer, uvec2, src1_ptr, src1_shift, 3, readonly); TENSOR_DECLARATION(3, dstBuffer, uvec2, dst_ptr, dst_shift, 3, writeonly); void main() { ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift); ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift); ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift); int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X); /* Compute the address for the vector A and matrix B */ TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * src0_attrs.stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y)); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(idx) * src1_attrs.stride_x); /* Compute end row address for matrix A */ uint end_row_vec_a = uint(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) + uint(COLS_A << 1); /* Reset accumulators */ vec4 acc0 = vec4(0.0f); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 vec4 acc1 = vec4(0.0f); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 vec4 acc2 = vec4(0.0f); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 vec4 acc3 = vec4(0.0f); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 for(; int(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) <= int(end_row_vec_a - uint(16)); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(8) * src0_attrs.stride_x), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(8) * src1_attrs.stride_y)) { vec4 a0[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(src0_ptr, src0_iter); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 vec4 a1[2] = LOAD_UNPACK8_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 vec4 a2[2] = LOAD_UNPACK8_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 vec4 a3[2] = LOAD_UNPACK8_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 vec4 b; for(int i = 0; i < 8; i++) { int j = i >> 2; int k = i % 4; b = LOAD_UNPACK4_HALF(src1_ptr, IMAGE_OFFSET(src1_iter, 0, i)); acc0 += b * vec4(a0[j][k]); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 acc1 += b * vec4(a1[j][k]); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 acc2 += b * vec4(a2[j][k]); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 acc3 += b * vec4(a3[j][k]); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 } } for(; int(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) < int(end_row_vec_a); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, 2 * 8), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(8) * src1_attrs.stride_y)) { vec4 a0[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(src0_ptr, src0_iter); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 vec4 a1[2] = LOAD_UNPACK8_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 vec4 a2[2] = LOAD_UNPACK8_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 vec4 a3[2] = LOAD_UNPACK8_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 vec4 b; int leftover = COLS_A % 8; for(int i = 0; i < leftover; i++) { int j = i >> 2; int k = i % 4; b = LOAD_UNPACK4_HALF(src1_ptr, IMAGE_OFFSET(src1_iter, 0, i)); acc0 += b * vec4(a0[j][k]); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 acc1 += b * vec4(a1[j][k]); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 acc2 += b * vec4(a2[j][k]); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 acc3 += b * vec4(a3[j][k]); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 } } /* Multiply by the weight of vector-matrix product */ acc0 = acc0 * vec4(ALPHA); STORE_PACK4_CURRENT_ITEM_HALF(dst_ptr, dst_iter, acc0); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 STORE_PACK4_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 1), acc1); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 STORE_PACK4_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 2), acc2); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 STORE_PACK4_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 3), acc3); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 } #elif defined(MM_PROCESS_8X) /* PROCESS_8X */ TENSOR_DECLARATION(1, src0Buffer, uvec4, src0_ptr, src0_shift, 4, readonly); TENSOR_DECLARATION(2, src1Buffer, uvec4, src1_ptr, src1_shift, 4, readonly); TENSOR_DECLARATION(3, dstBuffer, uvec4, dst_ptr, dst_shift, 4, writeonly); void main() { ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift); ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift); ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift); int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X); /* Compute the address for the vector A and matrix B */ TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * src0_attrs.stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y)); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(idx) * src1_attrs.stride_x); /* Compute end row address for matrix A */ uint end_row_vec_a = uint(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) + uint(COLS_A << 1); /* Reset accumulators */ vec4 acc[2]; acc[0] = vec4(0.0f); acc[1] = vec4(0.0f); for(; int(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) <= int(end_row_vec_a - uint(16)); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(8) * src0_attrs.stride_x), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(8) * src1_attrs.stride_y)) { vec4 a[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(src0_ptr, src0_iter); vec4 b[2]; for(int i = 0; i < 8; i++) { int j = i >> 2; int k = i % 4; b = LOAD_UNPACK8_HALF(src1_ptr, IMAGE_OFFSET(src1_iter, 0, i)); acc[0] += b[0] * vec4(a[j][k]); acc[1] += b[1] * vec4(a[j][k]); } } for(; int(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) < int(end_row_vec_a); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(8) * uint(2)), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(8) * src1_attrs.stride_y)) { vec4 a[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(src0_ptr, src0_iter); vec4 b[2]; int leftover = COLS_A % 8; for(int i = 0; i < leftover; i++) { int j = i >> 2; int k = i % 4; b = LOAD_UNPACK8_HALF(src1_ptr, IMAGE_OFFSET(src1_iter, 0, i)); acc[0] += b[0] * vec4(a[j][k]); acc[1] += b[1] * vec4(a[j][k]); } } /* Multiply by the weight of vector-matrix product */ acc[0] = acc[0] * vec4(ALPHA); acc[1] = acc[1] * vec4(ALPHA); STORE_PACK8_CURRENT_ITEM_HALF(dst_ptr, dst_iter, acc); } #endif /* PROCESS_8X */ #endif /* GEMM_MM_FLOATING_POINT */ #ifdef GEMM_ACCUMULATE_BIASES #if defined(ACCUM_PROCESS_4X) /** This kernel accumulates each row with the biases vector * * @param[in, out] accum_ptr Pointer to the accumulate tensor. Supported data type: F16 * @param[in] accum_attrs The attributes of the accumulate tensor * @param[in] biases_ptr Pointer to the biases vector. Same as @p accum_ptr * @param[in] biases_attrs The attributes of the biases tensor */ SHADER_PARAMS_DECLARATION { ImageAttributes accum_attrs; VectorAttributes biases_attrs; }; TENSOR_DECLARATION(1, accumBuffer, uvec2, accum_ptr, accum_shift, 3, restrict); TENSOR_DECLARATION(2, biasesBuffer, uvec2, biases_ptr, biases_shift, 3, readonly); void main(void) { ImageIterator accum_iter = CONVERT_TO_IMAGE_ITERATOR(accum_attrs, accum_shift); VectorIterator biases_iter = CONVERT_TO_VECTOR_ITERATOR(biases_attrs, biases_shift); vec4 u[2]; u[0] = LOAD_UNPACK4_CURRENT_ITEM_HALF(accum_ptr, accum_iter); u[1] = LOAD_UNPACK4_CURRENT_ITEM_HALF(biases_ptr, biases_iter); vec4 tmp; tmp = u[0] + u[1]; STORE_PACK4_CURRENT_ITEM_HALF(accum_ptr, accum_iter, tmp); } #elif defined(ACCUM_PROCESS_8X) /* ACCUM_PROCESS_8X */ SHADER_PARAMS_DECLARATION { ImageAttributes accum_attrs; VectorAttributes biases_attrs; }; TENSOR_DECLARATION(1, accumBuffer, uvec4, accum_ptr, accum_shift, 4, restrict); TENSOR_DECLARATION(2, biasesBuffer, uvec4, biases_ptr, biases_shift, 4, readonly); void main(void) { ImageIterator accum_iter = CONVERT_TO_IMAGE_ITERATOR(accum_attrs, accum_shift); VectorIterator biases_iter = CONVERT_TO_VECTOR_ITERATOR(biases_attrs, biases_shift); vec4 u[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(accum_ptr, accum_iter); vec4 v[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(biases_ptr, biases_iter); vec4 r[2]; r[0] = u[0] + v[0]; r[1] = u[1] + v[1]; STORE_PACK8_CURRENT_ITEM_HALF(accum_ptr, accum_iter, r); } #endif /* ACCUM_PROCESS_8X */ #endif /* GEMM_ACCUMULATE_BIASES */ #ifdef GEMM_MM_INTERLEAVED_TRANSPOSED /** This OpenGL ES kernel is optimised for Midgard. It computes the matrix multiplication between matrix A (src0) and matrix B (src1) * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication * * @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha * * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16 * @param[in] src0_attrs The attributes of the source matrix * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr * @param[in] src1_attrs The attributes of the source matrix * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr * @param[in] dst_attrs The attributes of the destination matrix */ SHADER_PARAMS_DECLARATION { ImageAttributes src0_attrs; ImageAttributes src1_attrs; ImageAttributes dst_attrs; }; TENSOR_DECLARATION(1, src0Buffer, uvec2, src0_ptr, src0_shift, 3, readonly); TENSOR_DECLARATION(2, src1Buffer, uvec4, src1_ptr, src1_shift, 4, readonly); TENSOR_DECLARATION(3, dstBuffer, uvec4, dst_ptr, dst_shift, 4, writeonly); void main() { ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift); ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift); ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift); /* Compute address for matrix A and B */ TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * (src0_attrs.stride_y)); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(gl_GlobalInvocationID.x) * (src1_attrs.stride_y)); /* Compute end row address for matrix B */ int end_row_mtx_b = (int(CURRENT_ITEM_OFFSET_IN_BYTES(src1_iter)) >> 1) + int(COLS_B); /* Reset accumulators */ vec4 c00[2]; vec4 c10[2]; vec4 c20[2]; vec4 c30[2]; c00[0] = vec4(0.0f); c00[1] = vec4(0.0f); c10[0] = vec4(0.0f); c10[1] = vec4(0.0f); c20[0] = vec4(0.0f); c20[1] = vec4(0.0f); c30[0] = vec4(0.0f); c30[1] = vec4(0.0f); // FIXME: loop unrolling really needed for GLES? for(; (int(CURRENT_ITEM_OFFSET_IN_BYTES(src1_iter)) >> 1) <= (end_row_mtx_b - 16); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, 16), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, 32)) { /* Load values from matrix A (interleaved) and matrix B (transposed) */ vec4 a0 = LOAD_UNPACK4_CURRENT_ITEM_HALF(src0_ptr, src0_iter); vec4 b0[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(src1_ptr, src1_iter); c00[0] += vec4(a0.x) * b0[0]; c00[1] += vec4(a0.x) * b0[1]; c10[0] += vec4(a0.y) * b0[0]; c10[1] += vec4(a0.y) * b0[1]; c20[0] += vec4(a0.z) * b0[0]; c20[1] += vec4(a0.z) * b0[1]; c30[0] += vec4(a0.w) * b0[0]; c30[1] += vec4(a0.w) * b0[1]; /* Load values from matrix A (interleaved) and matrix B (transposed) */ a0 = LOAD_UNPACK4_HALF(src0_ptr, TENSOR_OFFSET_ADVANCE_IN_BYTES(src0_iter, 8)); b0 = LOAD_UNPACK8_HALF(src1_ptr, TENSOR_OFFSET_ADVANCE_IN_BYTES(src1_iter, 16)); c00[0] += vec4(a0.x) * b0[0]; c00[1] += vec4(a0.x) * b0[1]; c10[0] += vec4(a0.y) * b0[0]; c10[1] += vec4(a0.y) * b0[1]; c20[0] += vec4(a0.z) * b0[0]; c20[1] += vec4(a0.z) * b0[1]; c30[0] += vec4(a0.w) * b0[0]; c30[1] += vec4(a0.w) * b0[1]; } for(; (int(CURRENT_ITEM_OFFSET_IN_BYTES(src1_iter)) >> 1) < end_row_mtx_b; TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, 8), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, 16)) { /* Load values from matrix A (interleaved) and matrix B (transposed) */ vec4 a0 = LOAD_UNPACK4_CURRENT_ITEM_HALF(src0_ptr, src0_iter); vec4 b0[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(src1_ptr, src1_iter); c00[0] += vec4(a0.x) * b0[0]; c00[1] += vec4(a0.x) * b0[1]; c10[0] += vec4(a0.y) * b0[0]; c10[1] += vec4(a0.y) * b0[1]; c20[0] += vec4(a0.z) * b0[0]; c20[1] += vec4(a0.z) * b0[1]; c30[0] += vec4(a0.w) * b0[0]; c30[1] += vec4(a0.w) * b0[1]; } /* Multiply by the weight of matrix product */ c00[0] = c00[0] * vec4(ALPHA); c00[1] = c00[1] * vec4(ALPHA); c10[0] = c10[0] * vec4(ALPHA); c10[1] = c10[1] * vec4(ALPHA); c20[0] = c20[0] * vec4(ALPHA); c20[1] = c20[1] * vec4(ALPHA); c30[0] = c30[0] * vec4(ALPHA); c30[1] = c30[1] * vec4(ALPHA); /* Store 4x8 block */ STORE_PACK8_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 0), c00); STORE_PACK8_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 1), c10); STORE_PACK8_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 2), c20); STORE_PACK8_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 3), c30); } #endif /* GEMM_MM_INTERLEAVED_TRANSPOSED */ #else /* DATA_TYPE_FP16 */ #error Data type not supported #endif /* DATA_TYPE_FP32 */