/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ layout(local_size_x = LOCAL_SIZE_X, local_size_y = LOCAL_SIZE_Y, local_size_z = LOCAL_SIZE_Z) in; #include "helpers.h" #if defined(DATA_TYPE_FP32) #define LOAD8(r, name, offset) \ r.x = LOAD4(name, offset); \ r.y = LOAD4(name, offset + uint(1)) #define LOAD16(r, name, offset) \ r.x = LOAD4(name, offset); \ r.y = LOAD4(name, offset + uint(1)); \ r.z = LOAD4(name, offset + uint(2)); \ r.w = LOAD4(name, offset + uint(3)) #define STORE16(name, offset, r) \ STORE4(name, offset, r.x); \ STORE4(name, offset + uint(1), r.y); \ STORE4(name, offset + uint(2), r.z); \ STORE4(name, offset + uint(3), r.w) #ifdef GEMM_TRANSPOSE1xW BUFFER_DECLARATION(src, 1, float, readonly); BUFFER_DECLARATION(dst, 2, float, writeonly); layout(std140) uniform shader_params { IMAGE_PARAM_DECLARATION(src); IMAGE_PARAM_DECLARATION(dst); }; /** This OpenGL ES kernel computes the "vector" 1x4 transposition of input matrix * * @param[in] src_ptr Pointer to the source matrix. Supported data types: F32 * @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes) * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes) * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix */ void main(void) { /* Compute address for Matrix B - source */ Image src = CONVERT_TO_IMAGE_STRUCT(src); Image dst = CONVERT_TO_IMAGE_STRUCT(dst); /* Compute address for Matrix B transposed - destination. X and Y are swapped */ uint dst_addr_in_bytes = (gl_GlobalInvocationID.y * uint(16) + gl_GlobalInvocationID.x * dst.stride_y + dst.offset_first_element_in_bytes) >> 2; vec4 b0; LOAD16(b0, src, offset(src, 0, 0)); STORE16(dst, dst_addr_in_bytes, b0); } #endif /* GEMM_TRANSPOSE1xW */ #ifdef GEMM_INTERLEAVE4x4 BUFFER_DECLARATION(src, 1, float, readonly); BUFFER_DECLARATION(dst, 2, float, writeonly); layout(std140) uniform shader_params { IMAGE_PARAM_DECLARATION(src); IMAGE_PARAM_DECLARATION(dst); }; /** This OpenGLES kernel reshapes the input matrix interleaving the values * * @param[in] src_ptr Pointer to the source matrix. Supported data types: F32 * @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes) * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes) * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix */ void main(void) { /* Compute source and destination addresses */ Image src = CONVERT_TO_IMAGE_STRUCT(src); Image dst = CONVERT_TO_IMAGE_STRUCT(dst); int i; int j; for(i = 0; i < 4; ++i) { for(j = 0; j < 4; ++j) { float res = LOAD4(src, offset(src, i, j)); uint ofset0 = CURRENT_OFFSET(dst) + uint(i * 4 + j); STORE4(dst, ofset0, res); } } } #endif /* GEMM_INTERLEAVE4x4 */ #ifdef GEMM_ACCUMULATE_BIASES BUFFER_DECLARATION(accum, 1, float, restrict); BUFFER_DECLARATION(biases, 2, float, readonly); layout(std140) uniform shader_params { IMAGE_PARAM_DECLARATION(accum); VECTOR_PARAM_DECLARATION(biases); }; /** This kernel accumulates each row with the biases vector * * @param[in, out] accum_ptr Pointer to the accumulate tensor. Supported data type: F32 * @param[in] accum_stride_x Stride of the accmulate tensor in X dimension (in bytes) * @param[in] accum_step_x accum_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] accum_stride_y Stride of the accumlulate tensor in Y dimension (in bytes) * @param[in] accum_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] accum_offset_first_element_in_bytes The offset of the first element in the accumulate tensor * @param[in] biases_ptr Pointer to the biases vector. Same as @p accum_ptr * @param[in] biases_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] biases_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] biases_offset_first_element_in_bytes The offset of the first element in the destination tensor */ void main(void) { Image accum = CONVERT_TO_IMAGE_STRUCT(accum); Vector biases = CONVERT_TO_VECTOR_STRUCT(biases); for(int i = 0; i < 16; ++i) { float accum_value = LOAD4(accum, CURRENT_OFFSET(accum) + uint(i)); float biases_value = LOAD4(biases, CURRENT_OFFSET(biases) + uint(i)); accum_value = biases_value + accum_value; // Store result in the accummulate buffer STORE4(accum, CURRENT_OFFSET(accum) + uint(i), accum_value); } } #endif /* GEMM_ACCUMULATE_BIASES */ #ifdef GEMM_MM_INTERLEAVED_TRANSPOSED /* unvalidate */ BUFFER_DECLARATION(src0, 1, float, readonly); BUFFER_DECLARATION(src1, 2, float, readonly); BUFFER_DECLARATION(dst, 3, float, writeonly); layout(std140) uniform shader_params { IMAGE_PARAM_DECLARATION(src0); IMAGE_PARAM_DECLARATION(src1); IMAGE_PARAM_DECLARATION(dst); }; /** This OpenGL ES kernel is optimised for Midgard. It computes the matrix multiplication between matrix A (src0) and matrix B (src1) * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication * * @attention The width of matrix B and the alpha's value need to be passed at compile time using WIDTH_MATRIX_B and ALPHA * * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32 * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes) * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes) * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes) * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes) * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes) * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes) * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix */ void main() { Image src0 = CONVERT_TO_IMAGE_STRUCT(src0); Image src1 = CONVERT_TO_IMAGE_STRUCT(src1); Image dst = CONVERT_TO_IMAGE_STRUCT(dst); /* Compute address for matrix A and B */ src0.current_offset = (src0.offset_first_element_in_bytes + (uint(gl_GlobalInvocationID.y) * uint(src0.stride_y))) >> uint(2); src1.current_offset = (src1.offset_first_element_in_bytes + (uint(gl_GlobalInvocationID.x) * uint(src1.stride_y))) >> uint(2); /* Compute end row address for matrix B */ int end_row_mtx_b = int(src1.current_offset) + int(COLS_B); /* Reset accumulators */ vec4 c00 = vec4(0.0f); vec4 c10 = vec4(0.0f); vec4 c20 = vec4(0.0f); vec4 c30 = vec4(0.0f); // FIXME: loop unrolling really needed for GLES? for(; int(src1.current_offset) <= (end_row_mtx_b - 8); src0.current_offset += uint(8), src1.current_offset += uint(8)) { /* Load values from matrix A (interleaved) and matrix B (transposed) */ vec4 a0; vec4 b0; LOAD16(a0, src0, src0.current_offset); LOAD16(b0, src1, src1.current_offset); c00 += vec4(a0.x) * b0; c10 += vec4(a0.y) * b0; c20 += vec4(a0.z) * b0; c30 += vec4(a0.w) * b0; /* Load values from matrix A (interleaved) and matrix B (transposed) */ LOAD16(a0, src0, src0.current_offset + uint(4)); LOAD16(b0, src1, src1.current_offset + uint(4)); c00 += vec4(a0.x) * b0; c10 += vec4(a0.y) * b0; c20 += vec4(a0.z) * b0; c30 += vec4(a0.w) * b0; } for(; int(src1.current_offset) < end_row_mtx_b; src0.current_offset += uint(4), src1.current_offset += uint(4)) { /* Load values from matrix A (interleaved) and matrix B (transposed) */ vec4 a0; vec4 b0; LOAD16(a0, src0, src0.current_offset); LOAD16(b0, src1, src1.current_offset); c00 += vec4(a0.x) * b0; c10 += vec4(a0.y) * b0; c20 += vec4(a0.z) * b0; c30 += vec4(a0.w) * b0; } /* Multiply by the weight of matrix product */ c00 = c00 * vec4(ALPHA); c10 = c10 * vec4(ALPHA); c20 = c20 * vec4(ALPHA); c30 = c30 * vec4(ALPHA); /* Store 4x4 block */ STORE16(dst, offset(dst, 0, 0), c00); STORE16(dst, offset(dst, 0, 1), c10); STORE16(dst, offset(dst, 0, 2), c20); STORE16(dst, offset(dst, 0, 3), c30); } #endif /* GEMM_MM_INTERLEAVED_TRANSPOSED */ #ifdef GEMM_MM_FLOATING_POINT BUFFER_DECLARATION(src0, 1, float, readonly); BUFFER_DECLARATION(src1, 2, float, readonly); BUFFER_DECLARATION(dst, 3, float, writeonly); layout(std140) uniform shader_params { IMAGE_PARAM_DECLARATION(src0); IMAGE_PARAM_DECLARATION(src1); IMAGE_PARAM_DECLARATION(dst); }; /** This OpenGL ES kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1) * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication * * @attention The width of matrix B and the alpha's value need to be passed at compile time using WIDTH_MATRIX_B and ALPHA * * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32 * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes) * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes) * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes) * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes) * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes) * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes) * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix */ void main() { Image src0 = CONVERT_TO_IMAGE_STRUCT(src0); Image src1 = CONVERT_TO_IMAGE_STRUCT(src1); Image dst = CONVERT_TO_IMAGE_STRUCT(dst); int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X); /* Compute the address for the vector A and matrix B */ src0.current_offset = (src0_offset_first_element_in_bytes + uint(gl_GlobalInvocationID.y) * src0_stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y)) >> uint(2); src1.current_offset = (src1_offset_first_element_in_bytes + uint(idx * 4)) >> uint(2); /* Compute end row address for matrix A */ int end_row_vec_a = int(src0.current_offset) + ((COLS_A * 4) >> 2); /* Reset accumulators */ vec4 acc0 = vec4(0.0f); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 vec4 acc1 = vec4(0.0f); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 vec4 acc2 = vec4(0.0f); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 vec4 acc3 = vec4(0.0f); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 for(; int(src0.current_offset) <= (end_row_vec_a - 2); src0.current_offset += uint(2), src1.current_offset += uint((2 * int(src1_stride_y)) >> 2)) { vec2 a0; LOAD8(a0, src0, src0.current_offset); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 vec2 a1; LOAD8(a1, src0, src0.current_offset + (src0_stride_y >> uint(2))); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 vec2 a2; LOAD8(a2, src0, src0.current_offset + ((uint(2) * src0_stride_y) >> uint(2))); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 vec2 a3; LOAD8(a3, src0, src0.current_offset + ((uint(3) * src0_stride_y) >> uint(2))); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 vec4 b0; vec4 b1; LOAD16(b0, src1, src1.current_offset); LOAD16(b1, src1, src1.current_offset + (src1_stride_y >> uint(2))); acc0 += b0 * vec4(a0.x); acc0 += b1 * vec4(a0.y); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 acc1 += b0 * vec4(a1.x); acc1 += b1 * vec4(a1.y); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 acc2 += b0 * vec4(a2.x); acc2 += b1 * vec4(a2.y); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 acc3 += b0 * vec4(a3.x); acc3 += b1 * vec4(a3.y); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 } for(; int(src0.current_offset) < end_row_vec_a; src0.current_offset += uint(1), src1.current_offset += uint(int(src1_stride_y) >> 2)) { // Load values from matrix A float a0; a0 = LOAD4(src0, src0.current_offset); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 float a1; a1 = LOAD4(src0, src0.current_offset + ((uint(1) * src0_stride_y) >> uint(2))); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 float a2; a2 = LOAD4(src0, src0.current_offset + ((uint(2) * src0_stride_y) >> uint(2))); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 float a3; a3 = LOAD4(src0, src0.current_offset + ((uint(3) * src0_stride_y) >> uint(2))); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 vec4 b0; LOAD16(b0, src1, src1.current_offset); acc0 += b0 * vec4(a0); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 acc1 += b0 * vec4(a1); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 acc2 += b0 * vec4(a2); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 acc3 += b0 * vec4(a3); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 } /* Multiply by the weight of vector-matrix product */ acc0 = acc0 * vec4(ALPHA); STORE16(dst, offset(dst, 0, 0), acc0); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 acc1 = acc1 * vec4(ALPHA); STORE16(dst, offset(dst, 0, 1), acc1); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 acc2 = acc2 * vec4(ALPHA); STORE16(dst, offset(dst, 0, 2), acc2); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 acc3 = acc3 * vec4(ALPHA); STORE16(dst, offset(dst, 0, 3), acc3); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 } #endif /* GEMM_MM_FLOATING_POINT */ #ifdef GEMM_MATRIXADDITION BUFFER_DECLARATION(src, 1, float, readonly); BUFFER_DECLARATION(dst, 2, float, restrict); layout(std140) uniform shader_params { IMAGE_PARAM_DECLARATION(src); IMAGE_PARAM_DECLARATION(dst); }; /** This OpenGL ES kernel performs the in-place matrix addition between 2 matrices taking into account that the second matrix might be weighted by a scalar value beta: * * @attention The beta's value need to be passed at compile time using BETA * * @param[in] src_ptr Pointer to the source matrix. Supported data types: F32 * @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes) * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes) * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix */ void main(void) { /* Compute source and destination addresses */ Image src = CONVERT_TO_IMAGE_STRUCT(src); Image dst = CONVERT_TO_IMAGE_STRUCT(dst); /* Load values from A x B */ vec4 alpha_ab; vec4 c; vec4 out1; LOAD16(alpha_ab, dst, dst.current_offset); LOAD16(c, src, src.current_offset); /* Computes alpha * axb + beta * c */ out1 = alpha_ab + vec4(BETA * c); /* Store final result in axb matrix */ STORE16(dst, dst.current_offset, out1); } #endif /* GEMM_MATRIXADDITION */ #elif defined(DATA_TYPE_FP16) precision mediump float; #ifdef GEMM_MM_FLOATING_POINT #if defined(MM_PROCESS_4X) BUFFER_DECLARATION(src0, 1, uint, readonly); BUFFER_DECLARATION(src1, 2, uvec2, readonly); BUFFER_DECLARATION(dst, 3, uvec2, writeonly); layout(std140) uniform shader_params { IMAGE_PARAM_DECLARATION(src0); IMAGE_PARAM_DECLARATION(src1); IMAGE_PARAM_DECLARATION(dst); }; /** This OpenGL ES kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1) * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication * * @attention The width of matrix B and the alpha's value need to be passed at compile time using WIDTH_MATRIX_B and ALPHA * * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32 * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes) * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes) * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes) * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes) * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes) * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes) * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix */ void main() { Image src0 = GC_CONVERT_TO_IMAGE_STRUCT(src0); Image src1 = GC_CONVERT_TO_IMAGE_STRUCT(src1); Image dst = GC_CONVERT_TO_IMAGE_STRUCT(dst); int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X); /* Compute the address for the vector A and matrix B */ src0.current_offset = (src0_offset_first_element_in_bytes + uint(gl_GlobalInvocationID.y) * src0_stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y)); src1.current_offset = src1_offset_first_element_in_bytes + uint(idx) * src1_stride_x; /* Compute end row address for matrix A */ uint end_row_vec_a = src0.current_offset + uint(COLS_A << 1); /* Reset accumulators */ vec4 acc0 = vec4(0.0f); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 vec4 acc1 = vec4(0.0f); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 vec4 acc2 = vec4(0.0f); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 vec4 acc3 = vec4(0.0f); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 for(; int(src0.current_offset) < int(end_row_vec_a - uint(2)); src0.current_offset += uint(2 * 2), src1.current_offset += uint(2) * src1_stride_y) { uint packed_a; vec2 a0; GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 0); a0 = vec2(unpackHalf2x16(packed_a)); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 vec2 a1; GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 1); a1 = vec2(unpackHalf2x16(packed_a)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 vec2 a2; GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 2); a2 = vec2(unpackHalf2x16(packed_a)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 vec2 a3; GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 3); a3 = vec2(unpackHalf2x16(packed_a)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 uvec2 packed_b0; uvec2 packed_b1; vec4 b0; vec4 b1; GC_LOAD1_2D_OFFSET(packed_b0, src1, 0, 0); GC_LOAD1_2D_OFFSET(packed_b1, src1, 0, 1); b0 = vec4(unpackHalf2x16(packed_b0.x), unpackHalf2x16(packed_b0.y)); b1 = vec4(unpackHalf2x16(packed_b1.x), unpackHalf2x16(packed_b1.y)); acc0 += b0 * vec4(a0.x); acc0 += b1 * vec4(a0.y); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 acc1 += b0 * vec4(a1.x); acc1 += b1 * vec4(a1.y); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 acc2 += b0 * vec4(a2.x); acc2 += b1 * vec4(a2.y); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 acc3 += b0 * vec4(a3.x); acc3 += b1 * vec4(a3.y); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 } for(; src0.current_offset < end_row_vec_a; src0.current_offset += uint(2 * 2), src1.current_offset += src1_stride_y) { uint packed_a0; vec2 a0; GC_LOAD1_2D_OFFSET(packed_a0, src0, 0, 0); a0 = vec2(unpackHalf2x16(packed_a0)); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 vec2 a1; GC_LOAD1_2D_OFFSET(packed_a0, src0, 0, 1); a1 = vec2(unpackHalf2x16(packed_a0)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 vec2 a2; GC_LOAD1_2D_OFFSET(packed_a0, src0, 0, 2); a2 = vec2(unpackHalf2x16(packed_a0)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 vec2 a3; GC_LOAD1_2D_OFFSET(packed_a0, src0, 0, 3); a3 = vec2(unpackHalf2x16(packed_a0)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 uvec2 packed_b0; vec4 b0; GC_LOAD1_2D_OFFSET(packed_b0, src1, 0, 0); b0 = vec4(unpackHalf2x16(packed_b0.x), unpackHalf2x16(packed_b0.y)); acc0 += b0 * (a0.x); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 acc1 += b0 * (a1.x); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 acc2 += b0 * (a2.x); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 acc3 += b0 * (a3.x); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 } /* Multiply by the weight of vector-matrix product */ acc0 = acc0 * vec4(ALPHA); uvec2 packed_d; packed_d = uvec2(packHalf2x16(acc0.xy), packHalf2x16(acc0.zw)); GC_STORE1_2D_OFFSET(packed_d, dst, 0, 0); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 packed_d = uvec2(packHalf2x16(acc1.xy), packHalf2x16(acc1.zw)); GC_STORE1_2D_OFFSET(packed_d, dst, 0, 1); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 packed_d = uvec2(packHalf2x16(acc2.xy), packHalf2x16(acc2.zw)); GC_STORE1_2D_OFFSET(packed_d, dst, 0, 2); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 packed_d = uvec2(packHalf2x16(acc3.xy), packHalf2x16(acc3.zw)); GC_STORE1_2D_OFFSET(packed_d, dst, 0, 3); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 } #elif defined(MM_PROCESS_4X_OPTIMIZED) /* PROCESS_4X */ BUFFER_DECLARATION(src0, 1, uvec4, readonly); BUFFER_DECLARATION(src1, 2, uvec2, readonly); BUFFER_DECLARATION(dst, 3, uvec2, writeonly); layout(std140) uniform shader_params { IMAGE_PARAM_DECLARATION(src0); IMAGE_PARAM_DECLARATION(src1); IMAGE_PARAM_DECLARATION(dst); }; /** This OpenGL ES kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1) * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication * * @attention The width of matrix B and the alpha's value need to be passed at compile time using WIDTH_MATRIX_B and ALPHA * * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32 * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes) * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes) * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes) * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes) * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes) * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes) * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix */ void main() { Image src0 = GC_CONVERT_TO_IMAGE_STRUCT(src0); Image src1 = GC_CONVERT_TO_IMAGE_STRUCT(src1); Image dst = GC_CONVERT_TO_IMAGE_STRUCT(dst); int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X); /* Compute the address for the vector A and matrix B */ src0.current_offset = (src0_offset_first_element_in_bytes + uint(gl_GlobalInvocationID.y) * src0_stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y)); src1.current_offset = src1_offset_first_element_in_bytes + uint(idx) * src1_stride_x; /* Compute end row address for matrix A */ uint end_row_vec_a = src0.current_offset + uint(COLS_A << 1); /* Reset accumulators */ vec4 acc0 = vec4(0.0f); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 vec4 acc1 = vec4(0.0f); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 vec4 acc2 = vec4(0.0f); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 vec4 acc3 = vec4(0.0f); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 for(; int(src0.current_offset) < int(end_row_vec_a - uint(16)); src0.current_offset += uint(8) * src0_stride_x, src1.current_offset += uint(8) * src1_stride_y) { uvec4 packed_a; vec4 a0[2]; GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 0); a0[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y)); a0[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w)); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 vec4 a1[2]; GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 1); a1[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y)); a1[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 vec4 a2[2]; GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 2); a2[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y)); a2[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 vec4 a3[2]; GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 3); a3[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y)); a3[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 uvec2 packed_b; vec4 b; for(int i = 0; i < 8; i++) { int j = i >> 2; int k = i % 4; GC_LOAD1_2D_OFFSET(packed_b, src1, 0, i); b = vec4(unpackHalf2x16(packed_b.x), unpackHalf2x16(packed_b.y)); acc0 += b * vec4(a0[j][k]); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 acc1 += b * vec4(a1[j][k]); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 acc2 += b * vec4(a2[j][k]); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 acc3 += b * vec4(a3[j][k]); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 } } for(; src0.current_offset < end_row_vec_a; src0.current_offset += uint(2 * 8), src1.current_offset += uint(8) * src1_stride_y) { uvec4 packed_a; vec4 a0[2]; GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 0); a0[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y)); a0[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w)); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 vec4 a1[2]; GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 1); a1[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y)); a1[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 vec4 a2[2]; GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 2); a2[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y)); a2[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 vec4 a3[2]; GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 3); a3[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y)); a3[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w)); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 uvec2 packed_b; vec4 b; int leftover = COLS_A % 8; for(int i = 0; i < leftover; i++) { int j = i >> 2; int k = i % 4; GC_LOAD1_2D_OFFSET(packed_b, src1, 0, i); b = vec4(unpackHalf2x16(packed_b.x), unpackHalf2x16(packed_b.y)); acc0 += b * vec4(a0[j][k]); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 acc1 += b * vec4(a1[j][k]); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 acc2 += b * vec4(a2[j][k]); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 acc3 += b * vec4(a3[j][k]); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 } } /* Multiply by the weight of vector-matrix product */ acc0 = acc0 * vec4(ALPHA); uvec2 packed_d; packed_d = uvec2(packHalf2x16(acc0.xy), packHalf2x16(acc0.zw)); GC_STORE1_2D_OFFSET(packed_d, dst, 0, 0); #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 packed_d = uvec2(packHalf2x16(acc1.xy), packHalf2x16(acc1.zw)); GC_STORE1_2D_OFFSET(packed_d, dst, 0, 1); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 packed_d = uvec2(packHalf2x16(acc2.xy), packHalf2x16(acc2.zw)); GC_STORE1_2D_OFFSET(packed_d, dst, 0, 2); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 #if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 packed_d = uvec2(packHalf2x16(acc3.xy), packHalf2x16(acc3.zw)); GC_STORE1_2D_OFFSET(packed_d, dst, 0, 3); #endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 } #elif defined(MM_PROCESS_8X) /* PROCESS_4X */ BUFFER_DECLARATION(src0, 1, uvec4, readonly); BUFFER_DECLARATION(src1, 2, uvec4, readonly); BUFFER_DECLARATION(dst, 3, uvec4, writeonly); layout(std140) uniform shader_params { IMAGE_PARAM_DECLARATION(src0); IMAGE_PARAM_DECLARATION(src1); IMAGE_PARAM_DECLARATION(dst); }; /** This OpenGL ES kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1) * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication * * @attention The width of matrix B and the alpha's value need to be passed at compile time using WIDTH_MATRIX_B and ALPHA * * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32 * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes) * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes) * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes) * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes) * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes) * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes) * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix */ void main() { Image src0 = GC_CONVERT_TO_IMAGE_STRUCT(src0); Image src1 = GC_CONVERT_TO_IMAGE_STRUCT(src1); Image dst = GC_CONVERT_TO_IMAGE_STRUCT(dst); int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X); /* Compute the address for the vector A and matrix B */ src0.current_offset = (src0_offset_first_element_in_bytes + uint(gl_GlobalInvocationID.y) * src0_stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y)); src1.current_offset = src1_offset_first_element_in_bytes + uint(idx) * src1_stride_x; /* Compute end row address for matrix A */ uint end_row_vec_a = src0.current_offset + uint(COLS_A << 1); /* Reset accumulators */ vec4 acc[2]; acc[0] = vec4(0.0f); acc[1] = vec4(0.0f); for(; int(src0.current_offset) < int(end_row_vec_a - uint(16)); src0.current_offset += uint(8) * src0_stride_x, src1.current_offset += uint(8) * src1_stride_y) { uvec4 packed_a; vec4 a[2]; GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 0); a[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y)); a[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w)); uvec4 packed_b; vec4 b[2]; for(int i = 0; i < 8; i++) { int j = i >> 2; int k = i % 4; GC_LOAD1_2D_OFFSET(packed_b, src1, 0, i); b[0] = vec4(unpackHalf2x16(packed_b.x), unpackHalf2x16(packed_b.y)); b[1] = vec4(unpackHalf2x16(packed_b.z), unpackHalf2x16(packed_b.w)); acc[0] += b[0] * vec4(a[j][k]); acc[1] += b[1] * vec4(a[j][k]); } } for(; src0.current_offset < end_row_vec_a; src0.current_offset += uint(2 * 8), src1.current_offset += uint(8) * src1_stride_y) { uvec4 packed_a; vec4 a[2]; GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 0); a[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y)); a[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w)); uvec4 packed_b; vec4 b[2]; int leftover = COLS_A % 8; for(int i = 0; i < leftover; i++) { int j = i >> 2; int k = i % 4; GC_LOAD1_2D_OFFSET(packed_b, src1, 0, i); b[0] = vec4(unpackHalf2x16(packed_b.x), unpackHalf2x16(packed_b.y)); b[1] = vec4(unpackHalf2x16(packed_b.z), unpackHalf2x16(packed_b.w)); acc[0] += b[0] * vec4(a[j][k]); acc[1] += b[1] * vec4(a[j][k]); } } /* Multiply by the weight of vector-matrix product */ acc[0] = acc[0] * vec4(ALPHA); acc[1] = acc[1] * vec4(ALPHA); uvec4 packed_d; packed_d = uvec4(packHalf2x16(acc[0].xy), packHalf2x16(acc[0].zw), packHalf2x16(acc[1].xy), packHalf2x16(acc[1].zw)); GC_STORE1_2D_OFFSET(packed_d, dst, 0, 0); } #endif /* PROCESS_4X */ #endif /* GEMM_MM_FLOATING_POINT */ #ifdef GEMM_ACCUMULATE_BIASES #if defined(ACCUM_PROCESS_4X) BUFFER_DECLARATION(accum, 1, uvec2, restrict); BUFFER_DECLARATION(biases, 2, uvec2, readonly); layout(std140) uniform shader_params { IMAGE_PARAM_DECLARATION(accum); VECTOR_PARAM_DECLARATION(biases); }; /** This kernel accumulates each row with the biases vector * * @param[in, out] accum_ptr Pointer to the accumulate tensor. Supported data type: F16 * @param[in] accum_stride_x Stride of the accmulate tensor in X dimension (in bytes) * @param[in] accum_step_x accum_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] accum_stride_y Stride of the accumlulate tensor in Y dimension (in bytes) * @param[in] accum_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] accum_offset_first_element_in_bytes The offset of the first element in the accumulate tensor * @param[in] biases_ptr Pointer to the biases vector. Same as @p accum_ptr * @param[in] biases_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] biases_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] biases_offset_first_element_in_bytes The offset of the first element in the destination tensor */ void main(void) { Image accum = GC_CONVERT_TO_IMAGE_STRUCT(accum); Vector biases = GC_CONVERT_TO_VECTOR_STRUCT(biases); vec4 u[2]; uvec2 packed_s[2]; GC_LOAD1_2D_OFFSET(packed_s[0], accum, 0, 0); GC_LOAD1_1D_OFFSET(packed_s[1], biases, 0); u[0] = vec4(unpackHalf2x16(packed_s[0].x), unpackHalf2x16(packed_s[0].y)); u[1] = vec4(unpackHalf2x16(packed_s[1].x), unpackHalf2x16(packed_s[1].y)); vec4 tmp; tmp = u[0] + u[1]; packed_s[0] = uvec2(packHalf2x16(tmp.xy), packHalf2x16(tmp.zw)); GC_STORE1_2D_OFFSET(packed_s[0], accum, 0, 0); } #elif defined(ACCUM_PROCESS_8X) /* ACCUM_PROCESS_4X */ BUFFER_DECLARATION(accum, 1, uvec4, restrict); BUFFER_DECLARATION(biases, 2, uvec4, readonly); layout(std140) uniform shader_params { IMAGE_PARAM_DECLARATION(accum); VECTOR_PARAM_DECLARATION(biases); }; /** This kernel accumulates each row with the biases vector * * @param[in, out] accum_ptr Pointer to the accumulate tensor. Supported data type: F16 * @param[in] accum_stride_x Stride of the accmulate tensor in X dimension (in bytes) * @param[in] accum_step_x accum_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] accum_stride_y Stride of the accumlulate tensor in Y dimension (in bytes) * @param[in] accum_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] accum_offset_first_element_in_bytes The offset of the first element in the accumulate tensor * @param[in] biases_ptr Pointer to the biases vector. Same as @p accum_ptr * @param[in] biases_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] biases_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] biases_offset_first_element_in_bytes The offset of the first element in the destination tensor */ void main(void) { Image accum = GC_CONVERT_TO_IMAGE_STRUCT(accum); Vector biases = GC_CONVERT_TO_VECTOR_STRUCT(biases); vec4 u[2]; vec4 v[2]; uvec4 packed_s[2]; GC_LOAD1_2D_OFFSET(packed_s[0], accum, 0, 0); GC_LOAD1_1D_OFFSET(packed_s[1], biases, 0); u[0] = vec4(unpackHalf2x16(packed_s[0].x), unpackHalf2x16(packed_s[0].y)); u[1] = vec4(unpackHalf2x16(packed_s[0].z), unpackHalf2x16(packed_s[0].w)); v[0] = vec4(unpackHalf2x16(packed_s[1].x), unpackHalf2x16(packed_s[1].y)); v[1] = vec4(unpackHalf2x16(packed_s[1].z), unpackHalf2x16(packed_s[1].w)); vec4 r[2]; r[0] = u[0] + v[0]; r[1] = u[1] + v[1]; packed_s[0] = uvec4(packHalf2x16(r[0].xy), packHalf2x16(r[0].zw), packHalf2x16(r[1].xy), packHalf2x16(r[1].zw)); GC_STORE1_2D_OFFSET(packed_s[0], accum, 0, 0); } #endif /* ACCUM_PROCESS_4X */ #endif /* GEMM_ACCUMULATE_BIASES */ #else /* DATA_TYPE_FP32 */ #error Data type not supported #endif /* DATA_TYPE_FP32 */