/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ layout(local_size_x = LOCAL_SIZE_X, local_size_y = LOCAL_SIZE_Y, local_size_z = LOCAL_SIZE_Z) in; #include "helpers_cs.h" #if defined(DATA_TYPE_FP16) precision mediump float; #endif // DATA_TYPE_FP16 #ifdef FILL_IMAGE_BORDERS_REPLICATE /** Fill N pixel of the padding edge of a single channel image by replicating the closest valid pixel. * * @note The data type must be passed at compile time using "#define DATA_TYPE_NAME". e.g. "#define DATA_TYPE_FP32" * @attention The border size for top, bottom, left, right needs to be passed at the compile time. * e.g. BORDER_SIZE_TOP=0 BORDER_SIZE_BOTTOM=2 BORDER_SIZE_LEFT=0 BORDER_SIZE_RIGHT=2 * * @param[in,out] buf_ptr Pointer to the source image. Supported data types: F16/F32 * @param[in] buf_attrs The attributes of the source image * @param[in] width Width of the valid region of the image * @param[in] height Height of the valid region of the image * @param[in] start_pos_x X coordinate indicating the start point of the valid region * @param[in] start_pos_y Y coordinate indicating the start point of the valid region */ SHADER_PARAMS_DECLARATION { Tensor3DAttributes buf_attrs; uint width; uint height; int start_pos_x; int start_pos_y; }; #if defined(DATA_TYPE_FP32) TENSOR_DECLARATION(1, bufBuffer, float, buf_ptr, buf_shift, 2, restrict); void main() { ImageIterator buf_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR_NO_STEP(buf_attrs, buf_shift); // Update pointer to point to the starting point of the valid region TENSOR_ITERATOR_ADVANCE_IN_BYTES(buf_iter, start_pos_y * int(buf_attrs.stride_y) + start_pos_x * int(buf_attrs.stride_x)); int total_width = BORDER_SIZE_LEFT + int(width) + BORDER_SIZE_RIGHT; int gid0 = int(gl_GlobalInvocationID.x); int gidH = gid0 - total_width; int gidW = gid0 - BORDER_SIZE_LEFT; if(gidH >= 0) { // Handle left border float left_val = LOAD(buf_ptr, IMAGE_OFFSET(buf_iter, 0, gidH)); for(int i = 0; i < BORDER_SIZE_LEFT; ++i) { STORE(buf_ptr, IMAGE_OFFSET(buf_iter, -(i + 1), gidH), left_val); } // Handle right border float right_val = LOAD(buf_ptr, IMAGE_OFFSET(buf_iter, int(width) - 1, gidH)); for(int i = 0; i < BORDER_SIZE_RIGHT; ++i) { STORE(buf_ptr, IMAGE_OFFSET(buf_iter, int(width) + i, gidH), right_val); } } else { // Get value for corners int val_idx = gidW; if(gidW < 0 || gidW > (int(width) - 1)) { val_idx = gidW < 0 ? 0 : int(width) - 1; } // Handle top border float top_val = LOAD(buf_ptr, IMAGE_OFFSET(buf_iter, val_idx, 0)); for(int i = 0; i < BORDER_SIZE_TOP; ++i) { STORE(buf_ptr, IMAGE_OFFSET(buf_iter, gidW, -(i + 1)), top_val); } // Handle bottom border float bottom_val = LOAD(buf_ptr, IMAGE_OFFSET(buf_iter, val_idx, int(height) - 1)); for(int i = 0; i < BORDER_SIZE_BOTTOM; ++i) { STORE(buf_ptr, IMAGE_OFFSET(buf_iter, gidW, int(height) + i), bottom_val); } } } #elif defined(DATA_TYPE_FP16) TENSOR_DECLARATION(1, bufBuffer, uint, buf_ptr, buf_shift, 2, restrict); void set_replicate(uint offset, int pos, vec2 replicate_value) { vec2 b = LOAD_UNPACK2_HALF(buf_ptr, offset); if(pos % 2 == 0) { b.x = replicate_value.y; } else { b.y = replicate_value.x; } STORE_PACK2_HALF(buf_ptr, offset, b); } void main() { ImageIterator buf_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR_NO_STEP(buf_attrs, buf_shift); // Update pointer to point to the starting point of the valid region TENSOR_ITERATOR_ADVANCE_IN_BYTES(buf_iter, start_pos_y * int(buf_attrs.stride_y) + start_pos_x * int(buf_attrs.stride_x)); int total_width = BORDER_SIZE_LEFT + int(width) + BORDER_SIZE_RIGHT; int gid0 = int(gl_GlobalInvocationID.x); int gidH = gid0 - total_width; int gidW = gid0 - BORDER_SIZE_LEFT; if(gidH >= 0) { // Handle left border vec2 left_val = LOAD_UNPACK2_HALF(buf_ptr, IMAGE_OFFSET(buf_iter, 0, gidH)); for(int i = 0; i < BORDER_SIZE_LEFT; ++i) { uint offset = IMAGE_OFFSET(buf_iter, -(i + 1), gidH); int pos = BORDER_SIZE_LEFT - i - 1; if(i == 0) { if(pos % 2 == 0) { set_replicate(offset, pos, left_val); } } else { if(pos % 2 == 0) { if(BORDER_SIZE_LEFT % 2 == 0) { STORE_PACK2_HALF(buf_ptr, offset, left_val.xx); } else { STORE_PACK2_HALF(buf_ptr, offset, left_val.yy); } i++; } } } // Handle right border vec2 right_val_origin = LOAD_UNPACK2_HALF(buf_ptr, IMAGE_OFFSET(buf_iter, int(width) - 1, gidH)); vec2 right_val; if((((BORDER_SIZE_LEFT + int(width)) % 2)) == 1) { right_val = vec2(right_val_origin.x, right_val_origin.x); } else { right_val = vec2(right_val_origin.y, right_val_origin.y); } for(int i = 0; i < BORDER_SIZE_RIGHT; ++i) { uint offset = IMAGE_OFFSET(buf_iter, int(width) + i, gidH); int pos = i + BORDER_SIZE_LEFT + int(width); if(i == 0) { if(pos % 2 == 0) { STORE_PACK2_HALF(buf_ptr, offset, right_val); i++; } else { set_replicate(offset, pos, right_val); } } else { if(pos % 2 == 0) { STORE_PACK2_HALF(buf_ptr, offset, right_val); i++; } } } } else { // Get value for corners int val_idx = gidW; if(gidW < 0 || (gidW > (int(width) - 1))) { val_idx = gidW < 0 ? 0 : (int(width) - 1); } // Handle top border vec2 top_val = LOAD_UNPACK2_HALF(buf_ptr, IMAGE_OFFSET(buf_iter, val_idx, 0)); for(int i = 0; i < BORDER_SIZE_TOP; ++i) { uint offset = IMAGE_OFFSET(buf_iter, gidW, -(i + 1)); if(gid0 % 2 == 0) { if(gidW == (int(width) - 1)) { if(((BORDER_SIZE_LEFT + int(width)) % 2 == 1)) { STORE_PACK2_HALF(buf_ptr, offset, top_val.xx); } else { STORE_PACK2_HALF(buf_ptr, offset, top_val.yy); } } else { if(gidW < 0) { if(BORDER_SIZE_LEFT % 2 == 0) { STORE_PACK2_HALF(buf_ptr, offset, top_val.xx); } else { STORE_PACK2_HALF(buf_ptr, offset, top_val.yy); } } else if(gidW >= int(width)) { if((BORDER_SIZE_LEFT + int(width)) % 2 == 0) { STORE_PACK2_HALF(buf_ptr, offset, top_val.yy); } else { STORE_PACK2_HALF(buf_ptr, offset, top_val.xx); } } else { STORE_PACK2_HALF(buf_ptr, offset, top_val); } } } } // Handle bottom border vec2 bottom_val = LOAD_UNPACK2_HALF(buf_ptr, IMAGE_OFFSET(buf_iter, val_idx, int(height) - 1)); for(int i = 0; i < BORDER_SIZE_BOTTOM; ++i) { uint offset = IMAGE_OFFSET(buf_iter, gidW, int(height) + i); if(gid0 % 2 == 0) { if(gidW == (int(width) - 1)) { STORE_PACK2_HALF(buf_ptr, offset, bottom_val.xx); } else { if(gidW < 0) { if(BORDER_SIZE_LEFT % 2 == 0) { STORE_PACK2_HALF(buf_ptr, offset, bottom_val.xx); } else { STORE_PACK2_HALF(buf_ptr, offset, bottom_val.yy); } } else if(gidW >= int(width)) { if((BORDER_SIZE_LEFT + int(width)) % 2 == 0) { STORE_PACK2_HALF(buf_ptr, offset, bottom_val.yy); } else { STORE_PACK2_HALF(buf_ptr, offset, bottom_val.xx); } } else { STORE_PACK2_HALF(buf_ptr, offset, bottom_val); } } } } } } #endif /* DATA_TYPE_FP32 */ #endif /* FILL_IMAGE_BORDERS_REPLICATE */ #ifdef FILL_IMAGE_BORDERS_CONSTANT /** Fill N pixels of the padding edge of a single channel image with a constant value. * * @note The data type must be passed at compile time using "#define DATA_TYPE_NAME". e.g. "#define DATA_TYPE_FP32" * @attention The border size for top, bottom, left, right needs to be passed at the compile time. * e.g. BORDER_SIZE_TOP=0 BORDER_SIZE_BOTTOM=2 BORDER_SIZE_LEFT=0 BORDER_SIZE_RIGHT=2 * * @param[out] buf_ptr Pointer to the source image. Supported data types: F16/F32 * @param[in] buf_attrs The attributes of the source image * @param[in] width Width of the valid region of the image * @param[in] height Height of the valid region of the image * @param[in] start_pos_x X coordinate indicating the start point of the valid region * @param[in] start_pos_y Y coordinate indicating the start point of the valid region * @param[in] constant_value Constant value to use to fill the edges */ SHADER_PARAMS_DECLARATION { Tensor3DAttributes buf_attrs; uint width; uint height; int start_pos_x; int start_pos_y; float constant_value; }; #if defined(DATA_TYPE_FP32) TENSOR_DECLARATION(1, bufBuffer, float, buf_ptr, buf_shift, 2, writeonly); void main() { ImageIterator buf_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR_NO_STEP(buf_attrs, buf_shift); // Update pointer to point to the starting point of the valid region TENSOR_ITERATOR_ADVANCE_IN_BYTES(buf_iter, start_pos_y * int(buf_attrs.stride_y) + start_pos_x * int(buf_attrs.stride_x)); int total_width = BORDER_SIZE_LEFT + int(width) + BORDER_SIZE_RIGHT; int gid0 = int(gl_GlobalInvocationID.x); int gidH = gid0 - total_width; int gidW = gid0 - BORDER_SIZE_LEFT; if(gidH >= 0) { // Handle left border for(int i = 0; i < BORDER_SIZE_LEFT; ++i) { STORE(buf_ptr, IMAGE_OFFSET(buf_iter, -(i + 1), gidH), constant_value); } // Handle right border for(int i = 0; i < BORDER_SIZE_RIGHT; ++i) { STORE(buf_ptr, IMAGE_OFFSET(buf_iter, int(width) + i, gidH), constant_value); } } else { // Handle top border for(int i = 0; i < BORDER_SIZE_TOP; ++i) { STORE(buf_ptr, IMAGE_OFFSET(buf_iter, gidW, -(i + 1)), constant_value); } // Handle bottom border for(int i = 0; i < BORDER_SIZE_BOTTOM; ++i) { STORE(buf_ptr, IMAGE_OFFSET(buf_iter, gidW, int(height) + i), constant_value); } } } #elif defined(DATA_TYPE_FP16) TENSOR_DECLARATION(1, bufBuffer, uint, buf_ptr, buf_shift, 2, restrict); void set_constant(uint offset, int pos) { vec2 b = LOAD_UNPACK2_HALF(buf_ptr, offset); if(pos % 2 == 0) { b.x = constant_value; } else { b.y = constant_value; } STORE_PACK2_HALF(buf_ptr, offset, b); } void main() { ImageIterator buf_iter = CONVERT_TENSOR3D_TO_IMAGE_ITERATOR_NO_STEP(buf_attrs, buf_shift); int total_width = BORDER_SIZE_LEFT + int(width) + BORDER_SIZE_RIGHT; int gid0 = int(gl_GlobalInvocationID.x); int gidH = gid0 - total_width; int gidW = gid0 - BORDER_SIZE_LEFT; // Update pointer to point to the starting point of the valid region TENSOR_ITERATOR_ADVANCE_IN_BYTES(buf_iter, start_pos_y * int(buf_attrs.stride_y) + start_pos_x * int(buf_attrs.stride_x)); vec2 b = vec2(constant_value, constant_value); if(gidH >= 0) { // Handle left border for(int i = 0; i < BORDER_SIZE_LEFT; ++i) { uint offset = IMAGE_OFFSET(buf_iter, -(i + 1), gidH); int pos = BORDER_SIZE_LEFT - i - 1; if(i == 0) { if(pos % 2 == 0) { set_constant(offset, pos); } } else { if(pos % 2 == 0) { STORE_PACK2_HALF(buf_ptr, offset, b); } } } // Handle right border for(int i = 0; i < BORDER_SIZE_RIGHT; ++i) { uint offset = IMAGE_OFFSET(buf_iter, int(width) + i, gidH); int pos = i + BORDER_SIZE_LEFT + int(width); if(i == 0) { if(pos % 2 == 0) { STORE_PACK2_HALF(buf_ptr, offset, b); } else { set_constant(offset, pos); } } else { if(pos % 2 == 0) { STORE_PACK2_HALF(buf_ptr, offset, b); } } } } else { // Handle top border for(int i = 0; i < BORDER_SIZE_TOP; ++i) { uint offset = IMAGE_OFFSET(buf_iter, gidW, -(i + 1)); if(gid0 % 2 == 0) { STORE_PACK2_HALF(buf_ptr, offset, b); } } // Handle bottom border for(int i = 0; i < BORDER_SIZE_BOTTOM; ++i) { uint offset = IMAGE_OFFSET(buf_iter, gidW, int(height) + i); if(gid0 % 2 == 0) { STORE_PACK2_HALF(buf_ptr, offset, b); } } } } #endif /* DATA_TYPE_FP32 */ #endif /* FILL_IMAGE_BORDERS_CONSTANT */