/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ layout(local_size_x = LOCAL_SIZE_X, local_size_y = LOCAL_SIZE_Y, local_size_z = LOCAL_SIZE_Z) in; #include "helpers_cs.h" #if defined(DATA_TYPE_FP16) precision mediump float; #endif /*DATA_TYPE_FP16*/ uint hash(uint x) { x += (x << 10u); x ^= (x >> 6u); x += (x << 3u); x ^= (x >> 11u); x += (x << 15u); return x; } uint hash(uvec3 v) { return hash(v.x ^ hash(v.y) ^ hash(v.z)); } float float_construct(uint m) { const uint ieee_mantissa = 0x007FFFFFu; const uint ieee_one = 0x3F800000u; m &= ieee_mantissa; m |= ieee_one; float f = uintBitsToFloat(m); return f - 1.0; } float rand(vec3 v, float seed) { return float_construct(hash(floatBitsToUint(v + seed))); } /** Dropout is used to improve over-fit on neural networks. * * @note The data type must be passed at compile time using "#define DATA_TYPE_NAME". e.g. "#define DATA_TYPE_FP32" * * @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32 * @param[in] src_attrs The attributes of the source tensor * @param[out] mask_ptr Pointer to the mask tensor. Supported data types: same as @p src_ptr * @param[in] mask_attrs The attributes of the mask tensor * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr * @param[in] dst_attrs The attributes of the destination tensor */ SHADER_PARAMS_DECLARATION { Tensor3DAttributes src_attrs; Tensor3DAttributes mask_attrs; Tensor3DAttributes dst_attrs; }; #ifdef DATA_TYPE_FP32 TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly); TENSOR_DECLARATION(2, maskBuffer, float, mask_ptr, mask_shift, 2, restrict); TENSOR_DECLARATION(3, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly); void main(void) { Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR(src_attrs, src_shift); Tensor3DIterator mask_iter = CONVERT_TO_TENSOR3D_ITERATOR(mask_attrs, mask_shift); Tensor3DIterator dst_iter = CONVERT_TO_TENSOR3D_ITERATOR(dst_attrs, dst_shift); float random = 0.f; float inputv = 0.f; float maskv = 0.f; float outputv = 0.f; #ifdef FORWARD random = rand(vec3(gl_GlobalInvocationID.xyz), SEED); maskv = (random > RATIO) ? 1.f : 0.f; STORE_CURRENT_ITEM(mask_ptr, mask_iter, maskv); #else /* FORWARD */ maskv = LOAD_CURRENT_ITEM(mask_ptr, mask_iter); #endif /* FORWARD */ inputv = LOAD_CURRENT_ITEM(src_ptr, src_iter); outputv = maskv * inputv * float(SCALE); STORE_CURRENT_ITEM(dst_ptr, dst_iter, outputv); } #elif defined(DATA_TYPE_FP16) TENSOR_DECLARATION(1, srcBuffer, uint, src_ptr, src_shift, 2, readonly); TENSOR_DECLARATION(2, maskBuffer, uint, mask_ptr, mask_shift, 2, restrict); TENSOR_DECLARATION(3, dstBuffer, uint, dst_ptr, dst_shift, 2, writeonly); void main(void) { Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR(src_attrs, src_shift); Tensor3DIterator mask_iter = CONVERT_TO_TENSOR3D_ITERATOR(mask_attrs, mask_shift); Tensor3DIterator dst_iter = CONVERT_TO_TENSOR3D_ITERATOR(dst_attrs, dst_shift); float random1 = 0.f; float random2 = 0.f; vec2 input_vec = vec2(0, 0); vec2 output_vec = vec2(0, 0); vec2 mask_vec = vec2(0, 0); #ifdef FORWARD random1 = rand(vec3(gl_GlobalInvocationID.xyz), SEED); random2 = rand(vec3(float(gl_GlobalInvocationID.x) + 0.5f, gl_GlobalInvocationID.yz), SEED); mask_vec.x = (random1 > RATIO) ? 1.f : 0.f; mask_vec.y = (random2 > RATIO) ? 1.f : 0.f; STORE_PACK2_CURRENT_ITEM_HALF(mask_ptr, mask_iter, mask_vec); #else /* FORWARD */ mask_vec = LOAD_UNPACK2_CURRENT_ITEM_HALF(mask_ptr, mask_iter); #endif /* FORWARD */ input_vec = LOAD_UNPACK2_CURRENT_ITEM_HALF(src_ptr, src_iter); output_vec = mask_vec * input_vec * float(SCALE); STORE_PACK2_CURRENT_ITEM_HALF(dst_ptr, dst_iter, output_vec); } #else /* DATA_TYPE_FP32 */ #endif /* DATA_TYPE_FP32 */