/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ layout(local_size_x = LOCAL_SIZE_X, local_size_y = LOCAL_SIZE_Y, local_size_z = LOCAL_SIZE_Z) in; #include "helpers.h" layout(std140) uniform shader_params { TENSOR3D_PARAM_DECLARATION(src); TENSOR3D_PARAM_DECLARATION(mask); TENSOR3D_PARAM_DECLARATION(dst); }; uint hash(uint x) { x += (x << 10u); x ^= (x >> 6u); x += (x << 3u); x ^= (x >> 11u); x += (x << 15u); return x; } uint hash(uvec3 v) { return hash(v.x ^ hash(v.y) ^ hash(v.z)); } float float_construct(uint m) { const uint ieee_mantissa = 0x007FFFFFu; const uint ieee_one = 0x3F800000u; m &= ieee_mantissa; m |= ieee_one; float f = uintBitsToFloat(m); return f - 1.0; } float rand(vec3 v, float seed) { return float_construct(hash(floatBitsToUint(v + seed))); } #ifdef DATA_TYPE_FP32 precision highp float; BUFFER_DECLARATION(src, 1, float, readonly); BUFFER_DECLARATION(mask, 2, float, ); BUFFER_DECLARATION(dst, 3, float, writeonly); /** Dropout is used to improve over-fit on neural networks. * * @note The data type must be passed at compile time using "#define DATA_TYPE_FP32" * * @param[in] src_ptr Pointer to the source tensor. Supported data types: F32 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] mask_ptr Pointer to the mask tensor. Supported data types: same as @p src_ptr * @param[in] mask_stride_x Stride of the mask tensor in X dimension (in bytes) * @param[in] mask_step_x mask_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] mask_stride_y Stride of the mask tensor in Y dimension (in bytes) * @param[in] mask_step_y mask_stride_y * number of elements along y processed per workitem(in bytes) * @param[in] mask_stride_z Stride of the mask tensor in Z dimension (in bytes) * @param[in] mask_step_z mask_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] mask_offset_first_element_in_bytes The offset of the first element in the mask tensor * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Z processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor */ void main(void) { Tensor3D src = GC_CONVERT_TO_TENSOR3D_STRUCT(src); Tensor3D mask = GC_CONVERT_TO_TENSOR3D_STRUCT(mask); Tensor3D dst = GC_CONVERT_TO_TENSOR3D_STRUCT(dst); float random = 0.f; float inputv = 0.f; float maskv = 0.f; float outputv = 0.f; #ifdef FORWARD random = rand(vec3(gl_GlobalInvocationID.xyz), SEED); maskv = (random > RATIO) ? 1.f : 0.f; GC_STORE1_3D_OFFSET(maskv, mask, 0, 0, 0); #else /* FORWARD */ GC_LOAD1_3D_OFFSET(maskv, mask, 0, 0, 0); #endif /* FORWARD */ GC_LOAD1_3D_OFFSET(inputv, src, 0, 0, 0); outputv = maskv * inputv * float(SCALE); GC_STORE1_3D_OFFSET(outputv, dst, 0, 0, 0); } #elif defined(DATA_TYPE_FP16) precision mediump float; BUFFER_DECLARATION(src, 1, uint, readonly); BUFFER_DECLARATION(mask, 2, uint, ); BUFFER_DECLARATION(dst, 3, uint, writeonly); /** Dropout is used to improve over-fit on neural networks. * * @note The data type must be passed at compile time using "#define DATA_TYPE_FP16" * * @param[in] src_ptr Pointer to the source tensor. Supported data types: F16 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor * @param[out] mask_ptr Pointer to the mask tensor. Supported data types: same as @p src_ptr * @param[in] mask_stride_x Stride of the mask tensor in X dimension (in bytes) * @param[in] mask_step_x mask_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] mask_stride_y Stride of the mask tensor in Y dimension (in bytes) * @param[in] mask_step_y mask_stride_y * number of elements along y processed per workitem(in bytes) * @param[in] mask_stride_z Stride of the mask tensor in Z dimension (in bytes) * @param[in] mask_step_z mask_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] mask_offset_first_element_in_bytes The offset of the first element in the mask tensor * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Z processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor */ void main(void) { Tensor3D src = GC_CONVERT_TO_TENSOR3D_STRUCT(src); Tensor3D mask = GC_CONVERT_TO_TENSOR3D_STRUCT(mask); Tensor3D dst = GC_CONVERT_TO_TENSOR3D_STRUCT(dst); float random1 = 0.f; float random2 = 0.f; uint inputv = uint(0); uint outputv = uint(0); uint maskv = uint(0); vec2 input_vec = vec2(0, 0); vec2 output_vec = vec2(0, 0); vec2 mask_vec = vec2(0, 0); #ifdef FORWARD random1 = rand(vec3(gl_GlobalInvocationID.xyz), SEED); random2 = rand(vec3(float(gl_GlobalInvocationID.x) + 0.5f, gl_GlobalInvocationID.yz), SEED); mask_vec.x = (random1 > RATIO) ? 1.f : 0.f; mask_vec.y = (random2 > RATIO) ? 1.f : 0.f; maskv = packHalf2x16(mask_vec); GC_STORE1_3D_OFFSET(maskv, mask, 0, 0, 0); #else /* FORWARD */ GC_LOAD1_3D_OFFSET(maskv, mask, 0, 0, 0); mask_vec = unpackHalf2x16(maskv); #endif /* FORWARD */ GC_LOAD1_3D_OFFSET(inputv, src, 0, 0, 0); input_vec = unpackHalf2x16(inputv); output_vec = mask_vec * input_vec * float(SCALE); outputv = packHalf2x16(output_vec); GC_STORE1_3D_OFFSET(outputv, dst, 0, 0, 0); } #else /* DATA_TYPE_FP32 */ #endif /* DATA_TYPE_FP32 */