/* * Copyright (c) 2017-2018 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ layout(local_size_x = LOCAL_SIZE_X, local_size_y = LOCAL_SIZE_Y, local_size_z = LOCAL_SIZE_Z) in; #include "helpers_cs.h" #ifdef FUSED_ACTIVATION #include "activation_layer_helpers_cs.h" #endif /* FUSED_ACTIVATION */ #if defined(DATA_TYPE_FP16) precision mediump float; #endif // DATA_TYPE_FP16 /** This kernel performs a direct convolution to convolve the low three dimensions. * * @note The data type must be passed at compile time using "#define DATA_TYPE_NAME". e.g. "#define DATA_TYPE_FP32" * @note This kernel has multiple optimized direct convolution options for FP16. * The direct convolution option must be passed at compile time using "#define PROCESS_nX_nY_nZ" e.g. "#define PROCESS_8X_1Y_1Z" * @note The convolution stride x must be passed at compile time using "#define STRIDE_X n" e.g. "#define STRIDE_X 1" * @note In case biases will be added to the convolution "#define HAS_BIAS" has to be passed to append the final matrix with 1 in each row. * * @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32 * @param[in] src_attrs The attributes of the source tensor * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr * @param[in] dst_attrs The attributes of the destination tensor * @param[in] weights_ptr Pointer to the weights tensor. Supported data types: same as @p src_ptr * @param[in] weights_attrs The attributes of the weights tensor * @param[in] biases_ptr Pointer to the biases tensor. Same as @p src_ptr * @param[in] biases_attrs The attributes of the weights tensor * @param[in] weights_stride_w Stride of the weights tensor in the 4th dimension * @param[in] weights_depth The third dimensions of the weights tensors */ SHADER_PARAMS_DECLARATION { Tensor3DAttributes src_attrs; Tensor3DAttributes dst_attrs; Tensor3DAttributes weights_attrs; #ifdef BIAS VectorAttributes biases_attrs; #endif /* BIAS */ uint weights_stride_w; uint weights_depth; }; #if defined(DATA_TYPE_FP32) TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly); TENSOR_DECLARATION(2, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly); TENSOR_DECLARATION(3, weightsBuffer, float, weights_ptr, weights_shift, 2, readonly); #ifdef BIAS TENSOR_DECLARATION(4, biasesBuffer, float, biases_ptr, biases_shift, 2, readonly); #endif /* BIAS */ void main() { ImageIterator src_iter = CONVERT_TO_IMAGE_ITERATOR(src_attrs, src_shift); Tensor3DIterator weights_iter = CONVERT_TO_TENSOR3D_ITERATOR_NO_STEP(weights_attrs, weights_shift); Tensor3DIterator dst_iter = CONVERT_TO_TENSOR3D_ITERATOR(dst_attrs, dst_shift); #ifdef BIAS VectorIterator biases_iter = CONVERT_TO_VECTOR_ITERATOR_NO_STEP(biases_attrs, biases_shift); #endif /* BIAS */ float pixels = 0.f; uint z_index = gl_GlobalInvocationID.z; TENSOR_ITERATOR_ADVANCE_IN_BYTES(weights_iter, z_index * weights_stride_w); float temp; float temp_weight; for(int d = 0; d < int(weights_depth); ++d) { temp = LOAD_CURRENT_ITEM(src_ptr, src_iter); temp_weight = LOAD_CURRENT_ITEM(weights_ptr, weights_iter); pixels += temp * temp_weight; TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, src_attrs.stride_z); TENSOR_ITERATOR_ADVANCE_IN_BYTES(weights_iter, weights_attrs.stride_z); } #ifdef BIAS pixels += LOAD(biases_ptr, VECTOR_OFFSET(biases_iter, z_index)); #endif /* BIAS */ #ifdef FUSED_ACTIVATION pixels = ACT_OP(pixels); #endif /* FUSED_ACTIVATION */ STORE_CURRENT_ITEM(dst_ptr, dst_iter, pixels); } #elif defined(DATA_TYPE_FP16) #if defined(PROCESS_4X_1Y_1Z) TENSOR_DECLARATION(1, srcBuffer, uvec2, src_ptr, src_shift, 3, readonly); TENSOR_DECLARATION(2, dstBuffer, uvec2, dst_ptr, dst_shift, 3, writeonly); TENSOR_DECLARATION(3, weightsBuffer, uint, weights_ptr, weights_shift, 2, readonly); #ifdef BIAS TENSOR_DECLARATION(4, biasesBuffer, uint, biases_ptr, biases_shift, 2, readonly); #endif /* BIAS */ #if STRIDE_X == 2 #define CONVOLVE(s, w) convolve_stride2(s, w) #elif STRIDE_X == 1 /* STRIDE_X == 1 */ #define CONVOLVE(s, w) convolve_stride1(s, w) #else /* STRIDE_X not equals 1 or 2 */ #error STRIDE_X larger than 2 is not supported #endif /* STRIDE_X == 2 */ vec4 convolve_stride1(ImageIterator src_iter, float w) { vec4 s; s = LOAD_UNPACK4_CURRENT_ITEM_HALF(src_ptr, src_iter); s *= w; return s; } vec4 convolve_stride2(ImageIterator src_iter, float w) { vec4 s[2]; vec4 r; s[0] = LOAD_UNPACK4_CURRENT_ITEM_HALF(src_ptr, src_iter); s[1] = LOAD_UNPACK4_HALF(src_ptr, IMAGE_OFFSET(src_iter, 4, 0)); r = vec4(s[0].xz, s[1].xz); r *= w; return r; } void main() { ImageIterator src_iter = CONVERT_TO_IMAGE_ITERATOR(src_attrs, src_shift); Tensor3DIterator weights_iter = CONVERT_TO_TENSOR3D_ITERATOR_NO_STEP(weights_attrs, weights_shift); Tensor3DIterator dst_iter = CONVERT_TO_TENSOR3D_ITERATOR(dst_attrs, dst_shift); #ifdef BIAS VectorIterator biases_iter = CONVERT_TO_VECTOR_ITERATOR_NO_STEP(biases_attrs, biases_shift); #endif /* BIAS */ vec4 pixels = vec4(0.f); uint z_index = gl_GlobalInvocationID.z; TENSOR_ITERATOR_ADVANCE_IN_BYTES(weights_iter, z_index * weights_stride_w); #ifdef WEIGHTS_OPTIMIZATION float w1, w2; int nums = (int(weights_depth)) / 2; for(int d = 0; d < nums; ++d) { vec2 vec2_w = LOAD_UNPACK2_CURRENT_ITEM_HALF(weights_ptr, weights_iter); w1 = vec2_w.x; vec4 r1 = CONVOLVE(src_iter, w1); pixels += r1; TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, src_attrs.stride_z); w2 = vec2_w.y; vec4 r2 = CONVOLVE(src_iter, w2); pixels += r2; TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, src_attrs.stride_z); TENSOR_ITERATOR_ADVANCE_IN_BYTES(weights_iter, weights_attrs.stride_z * uint(2)); } #else /* WEIGHTS_OPTIMIZATION */ float w; for(int d = 0; d < int(weights_depth); ++d) { w = LOAD_UNPACK2_CURRENT_ITEM_HALF(weights_ptr, weights_iter).x; vec4 r = CONVOLVE(src_iter, w); pixels += r; TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, src_attrs.stride_z); TENSOR_ITERATOR_ADVANCE_IN_BYTES(weights_iter, weights_attrs.stride_z); } #endif /* WEIGHTS_OPTIMIZATION */ #ifdef BIAS vec2 vec2_b; float b; vec2_b = LOAD_UNPACK2_HALF(biases_ptr, VECTOR_OFFSET(biases_iter, z_index)); if(z_index % uint(2) == uint(0)) { b = vec2_b.x; } else { b = vec2_b.y; } pixels += b; #endif /* BIAS */ #ifdef FUSED_ACTIVATION pixels = ACT_OP(pixels); #endif /* FUSED_ACTIVATION */ STORE_PACK4_CURRENT_ITEM_HALF(dst_ptr, dst_iter, pixels); } #elif defined(PROCESS_4X_2Y_1Z) TENSOR_DECLARATION(1, srcBuffer, uvec2, src_ptr, src_shift, 3, readonly); TENSOR_DECLARATION(2, dstBuffer, uvec2, dst_ptr, dst_shift, 3, writeonly); TENSOR_DECLARATION(3, weightsBuffer, uint, weights_ptr, weights_shift, 2, readonly); #ifdef BIAS TENSOR_DECLARATION(4, biasesBuffer, uint, biases_ptr, biases_shift, 2, readonly); #endif /* BIAS */ #if STRIDE_X == 2 #define CONVOLVE(s, w) convolve_stride2(s, w) #elif STRIDE_X == 1 /* STRIDE_X == 1 */ #define CONVOLVE(s, w) convolve_stride1(s, w) #else /* STRIDE_X not equals 1 or 2 */ #error STRIDE_X larger than 2 is not supported #endif /* STRIDE_X == 2 */ vec4[2] convolve_stride1(ImageIterator src_iter, float w) { vec4 s[2]; s[0] = LOAD_UNPACK4_CURRENT_ITEM_HALF(src_ptr, src_iter); s[1] = LOAD_UNPACK4_HALF(src_ptr, IMAGE_OFFSET(src_iter, 0, int(STRIDE_Y))); s[0] *= w; s[1] *= w; return s; } vec4[2] convolve_stride2(ImageIterator src_iter, float w) { vec4 s1[2]; vec4 s2[2]; vec4 r[2]; s1[0] = LOAD_UNPACK4_CURRENT_ITEM_HALF(src_ptr, src_iter); s1[1] = LOAD_UNPACK4_HALF(src_ptr, IMAGE_OFFSET(src_iter, 4, 0)); r[0] = vec4(s1[0].xz, s1[1].xz); s2[0] = LOAD_UNPACK4_HALF(src_ptr, IMAGE_OFFSET(src_iter, 0, int(STRIDE_Y))); s2[1] = LOAD_UNPACK4_HALF(src_ptr, IMAGE_OFFSET(src_iter, 4, int(STRIDE_Y))); r[1] = vec4(s2[0].xz, s2[1].xz); r[0] *= w; r[1] *= w; return r; } void main() { ImageIterator src_iter = CONVERT_TO_IMAGE_ITERATOR(src_attrs, src_shift); Tensor3DIterator weights_iter = CONVERT_TO_TENSOR3D_ITERATOR_NO_STEP(weights_attrs, weights_shift); Tensor3DIterator dst_iter = CONVERT_TO_TENSOR3D_ITERATOR(dst_attrs, dst_shift); #ifdef BIAS VectorIterator biases_iter = CONVERT_TO_VECTOR_ITERATOR_NO_STEP(biases_attrs, biases_shift); #endif /* BIAS */ vec4 pixels[2]; pixels[0] = vec4(0.f); pixels[1] = vec4(0.f); uint z_index = gl_GlobalInvocationID.z; TENSOR_ITERATOR_ADVANCE_IN_BYTES(weights_iter, z_index * weights_stride_w); #ifdef WEIGHTS_OPTIMIZATION float w1, w2; int nums = (int(weights_depth)) / 2; for(int d = 0; d < nums; ++d) { vec2 vec2_w = LOAD_UNPACK2_CURRENT_ITEM_HALF(weights_ptr, weights_iter); w1 = vec2_w.x; vec4 r1[2] = CONVOLVE(src_iter, w1); pixels[0] += r1[0]; pixels[1] += r1[1]; TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, src_attrs.stride_z); w2 = vec2_w.y; vec4 r2[2] = CONVOLVE(src_iter, w2); pixels[0] += r2[0]; pixels[1] += r2[1]; TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, src_attrs.stride_z); TENSOR_ITERATOR_ADVANCE_IN_BYTES(weights_iter, weights_attrs.stride_z * uint(2)); } #else /* WEIGHTS_OPTIMIZATION */ float w; for(int d = 0; d < int(weights_depth); ++d) { w = LOAD_UNPACK2_CURRENT_ITEM_HALF(weights_ptr, weights_iter).x; vec4 r[2] = CONVOLVE(src_iter, w); pixels[0] += r[0]; pixels[1] += r[1]; TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, src_attrs.stride_z); TENSOR_ITERATOR_ADVANCE_IN_BYTES(weights_iter, weights_attrs.stride_z); } #endif /* WEIGHTS_OPTIMIZATION */ #ifdef BIAS vec2 vec2_b; float b; vec2_b = LOAD_UNPACK2_HALF(biases_ptr, VECTOR_OFFSET(biases_iter, z_index)); if(z_index % uint(2) == uint(0)) { b = vec2_b.x; } else { b = vec2_b.y; } pixels[0] += b; pixels[1] += b; #endif /* BIAS */ #ifdef FUSED_ACTIVATION pixels[0] = ACT_OP(pixels[0]); pixels[1] = ACT_OP(pixels[1]); #endif /* FUSED_ACTIVATION */ STORE_PACK4_CURRENT_ITEM_HALF(dst_ptr, dst_iter, pixels[0]); STORE_PACK4_HALF(dst_ptr, TENSOR3D_OFFSET(dst_iter, 0, 1, 0), pixels[1]); } #elif defined(PROCESS_4X_3Y_1Z) TENSOR_DECLARATION(1, srcBuffer, uvec2, src_ptr, src_shift, 3, readonly); TENSOR_DECLARATION(2, dstBuffer, uvec2, dst_ptr, dst_shift, 3, writeonly); TENSOR_DECLARATION(3, weightsBuffer, uint, weights_ptr, weights_shift, 2, readonly); #ifdef BIAS TENSOR_DECLARATION(4, biasesBuffer, uint, biases_ptr, biases_shift, 2, readonly); #endif /* BIAS */ #if STRIDE_X == 2 #define CONVOLVE(s, w) convolve_stride2(s, w) #elif STRIDE_X == 1 /* STRIDE_X == 1 */ #define CONVOLVE(s, w) convolve_stride1(s, w) #else /* STRIDE_X not equals 1 or 2 */ #error STRIDE_X larger than 2 is not supported #endif /* STRIDE_X == 2 */ vec4[3] convolve_stride1(ImageIterator src_iter, float w) { vec4 s[3]; s[0] = LOAD_UNPACK4_CURRENT_ITEM_HALF(src_ptr, src_iter); s[1] = LOAD_UNPACK4_HALF(src_ptr, IMAGE_OFFSET(src_iter, 0, int(STRIDE_Y))); s[2] = LOAD_UNPACK4_HALF(src_ptr, IMAGE_OFFSET(src_iter, 0, (2 * int(STRIDE_Y)))); s[0] *= w; s[1] *= w; s[2] *= w; return s; } vec4[3] convolve_stride2(ImageIterator src_iter, float w) { vec4 s1[2]; vec4 s2[2]; vec4 s3[2]; vec4 r[3]; s1[0] = LOAD_UNPACK4_CURRENT_ITEM_HALF(src_ptr, src_iter); s1[1] = LOAD_UNPACK4_HALF(src_ptr, IMAGE_OFFSET(src_iter, 4, 0)); r[0] = vec4(s1[0].xz, s1[1].xz); s2[0] = LOAD_UNPACK4_HALF(src_ptr, IMAGE_OFFSET(src_iter, 0, int(STRIDE_Y))); s2[1] = LOAD_UNPACK4_HALF(src_ptr, IMAGE_OFFSET(src_iter, 4, int(STRIDE_Y))); r[1] = vec4(s2[0].xz, s2[1].xz); s3[0] = LOAD_UNPACK4_HALF(src_ptr, IMAGE_OFFSET(src_iter, 0, (2 * int(STRIDE_Y)))); s3[1] = LOAD_UNPACK4_HALF(src_ptr, IMAGE_OFFSET(src_iter, 4, (2 * int(STRIDE_Y)))); r[2] = vec4(s3[0].xz, s3[1].xz); r[0] *= w; r[1] *= w; r[2] *= w; return r; } void main() { ImageIterator src_iter = CONVERT_TO_IMAGE_ITERATOR(src_attrs, src_shift); Tensor3DIterator weights_iter = CONVERT_TO_TENSOR3D_ITERATOR_NO_STEP(weights_attrs, weights_shift); Tensor3DIterator dst_iter = CONVERT_TO_TENSOR3D_ITERATOR(dst_attrs, dst_shift); #ifdef BIAS VectorIterator biases_iter = CONVERT_TO_VECTOR_ITERATOR_NO_STEP(biases_attrs, biases_shift); #endif /* BIAS */ vec4 pixels[3]; pixels[0] = vec4(0.f); pixels[1] = vec4(0.f); pixels[2] = vec4(0.f); uint z_index = gl_GlobalInvocationID.z; TENSOR_ITERATOR_ADVANCE_IN_BYTES(weights_iter, z_index * weights_stride_w); #ifdef WEIGHTS_OPTIMIZATION float w1, w2; int nums = (int(weights_depth)) / 2; for(int d = 0; d < nums; ++d) { vec2 vec2_w = LOAD_UNPACK2_CURRENT_ITEM_HALF(weights_ptr, weights_iter); w1 = vec2_w.x; vec4 r1[3] = CONVOLVE(src_iter, w1); pixels[0] += r1[0]; pixels[1] += r1[1]; pixels[2] += r1[2]; TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, src_attrs.stride_z); w2 = vec2_w.y; vec4 r2[3] = CONVOLVE(src_iter, w2); pixels[0] += r2[0]; pixels[1] += r2[1]; pixels[2] += r2[2]; TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, src_attrs.stride_z); TENSOR_ITERATOR_ADVANCE_IN_BYTES(weights_iter, weights_attrs.stride_z * uint(2)); } #else /* WEIGHTS_OPTIMIZATION */ float w; for(int d = 0; d < int(weights_depth); ++d) { w = LOAD_UNPACK2_CURRENT_ITEM_HALF(weights_ptr, weights_iter).x; vec4 r[3] = CONVOLVE(src_iter, w); pixels[0] += r[0]; pixels[1] += r[1]; pixels[2] += r[2]; TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, src_attrs.stride_z); TENSOR_ITERATOR_ADVANCE_IN_BYTES(weights_iter, weights_attrs.stride_z); } #endif /* WEIGHTS_OPTIMIZATION */ #ifdef BIAS vec2 vec2_b; float b; vec2_b = LOAD_UNPACK2_HALF(biases_ptr, VECTOR_OFFSET(biases_iter, z_index)); if(z_index % uint(2) == uint(0)) { b = vec2_b.x; } else { b = vec2_b.y; } pixels[0] += b; pixels[1] += b; pixels[2] += b; #endif /* BIAS */ #ifdef FUSED_ACTIVATION pixels[0] = ACT_OP(pixels[0]); pixels[1] = ACT_OP(pixels[1]); pixels[2] = ACT_OP(pixels[2]); #endif /* FUSED_ACTIVATION */ STORE_PACK4_CURRENT_ITEM_HALF(dst_ptr, dst_iter, pixels[0]); STORE_PACK4_HALF(dst_ptr, TENSOR3D_OFFSET(dst_iter, 0, 1, 0), pixels[1]); STORE_PACK4_HALF(dst_ptr, TENSOR3D_OFFSET(dst_iter, 0, 2, 0), pixels[2]); } #elif defined(PROCESS_4X_4Y_1Z) TENSOR_DECLARATION(1, srcBuffer, uvec2, src_ptr, src_shift, 3, readonly); TENSOR_DECLARATION(2, dstBuffer, uvec2, dst_ptr, dst_shift, 3, writeonly); TENSOR_DECLARATION(3, weightsBuffer, uint, weights_ptr, weights_shift, 2, readonly); #ifdef BIAS TENSOR_DECLARATION(4, biasesBuffer, uint, biases_ptr, biases_shift, 2, readonly); #endif /* BIAS */ #if STRIDE_X == 2 #define CONVOLVE(s, w, x1, y1) convolve_stride2(s, w, x1, y1) #elif STRIDE_X == 1 /* STRIDE_X == 1 */ #define CONVOLVE(s, w, x1, y1) convolve_stride1(s, w, x1, y1) #else /* STRIDE_X not equals 1 or 2 */ #error STRIDE_X larger than 2 is not supported #endif /* STRIDE_X == 2 */ vec4[2] convolve_stride1(ImageIterator src_iter, float w, int x1, int y1) { vec4 s[2]; s[0] = LOAD_UNPACK4_HALF(src_ptr, IMAGE_OFFSET(src_iter, x1, y1)); s[1] = LOAD_UNPACK4_HALF(src_ptr, IMAGE_OFFSET(src_iter, x1, (y1 + int(STRIDE_Y)))); s[0] *= w; s[1] *= w; return s; } vec4[2] convolve_stride2(ImageIterator src_iter, float w, int x1, int y1) { vec4 s1[2]; vec4 s2[2]; vec4 r[2]; s1[0] = LOAD_UNPACK4_HALF(src_ptr, IMAGE_OFFSET(src_iter, x1, y1)); s1[1] = LOAD_UNPACK4_HALF(src_ptr, IMAGE_OFFSET(src_iter, (4 + x1), y1)); r[0] = vec4(s1[0].xz, s1[1].xz); s2[0] = LOAD_UNPACK4_HALF(src_ptr, IMAGE_OFFSET(src_iter, x1, (y1 + int(STRIDE_Y)))); s2[1] = LOAD_UNPACK4_HALF(src_ptr, IMAGE_OFFSET(src_iter, (4 + x1), (y1 + int(STRIDE_Y)))); r[1] = vec4(s2[0].xz, s2[1].xz); r[0] *= w; r[1] *= w; return r; } void main() { ImageIterator src_iter = CONVERT_TO_IMAGE_ITERATOR(src_attrs, src_shift); Tensor3DIterator weights_iter = CONVERT_TO_TENSOR3D_ITERATOR_NO_STEP(weights_attrs, weights_shift); Tensor3DIterator dst_iter = CONVERT_TO_TENSOR3D_ITERATOR(dst_attrs, dst_shift); #ifdef BIAS VectorIterator biases_iter = CONVERT_TO_VECTOR_ITERATOR_NO_STEP(biases_attrs, biases_shift); #endif /* BIAS */ vec4 pixels[2]; vec4 pixels1[2]; pixels[0] = vec4(0.f); pixels[1] = vec4(0.f); pixels1[0] = vec4(0.f); pixels1[1] = vec4(0.f); uint z_index = gl_GlobalInvocationID.z; TENSOR_ITERATOR_ADVANCE_IN_BYTES(weights_iter, z_index * weights_stride_w); #ifdef WEIGHTS_OPTIMIZATION float w1, w2; int nums = (int(weights_depth)) / 2; for(int d = 0; d < nums; ++d) { vec2 vec2_w = LOAD_UNPACK2_CURRENT_ITEM_HALF(weights_ptr, weights_iter); w1 = vec2_w.x; vec4 r1[2] = CONVOLVE(src_iter, w1, 0, 0); vec4 r2[2] = CONVOLVE(src_iter, w1, 0, (2 * int(STRIDE_Y))); pixels[0] += r1[0]; pixels[1] += r1[1]; pixels1[0] += r2[0]; pixels1[1] += r2[1]; TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, src_attrs.stride_z); w2 = vec2_w.y; vec4 r3[2] = CONVOLVE(src_iter, w2, 0, 0); vec4 r4[2] = CONVOLVE(src_iter, w2, 0, (2 * int(STRIDE_Y))); pixels[0] += r3[0]; pixels[1] += r3[1]; pixels1[0] += r4[0]; pixels1[1] += r4[1]; TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, src_attrs.stride_z); TENSOR_ITERATOR_ADVANCE_IN_BYTES(weights_iter, weights_attrs.stride_z * uint(2)); } #else /* WEIGHTS_OPTIMIZATION */ float w; for(int d = 0; d < int(weights_depth); ++d) { w = LOAD_UNPACK2_CURRENT_ITEM_HALF(weights_ptr, weights_iter).x; vec4 r1[2] = CONVOLVE(src_iter, w, 0, 0); vec4 r2[2] = CONVOLVE(src_iter, w, 0, (2 * int(STRIDE_Y))); pixels[0] += r1[0]; pixels[1] += r1[1]; pixels1[0] += r2[0]; pixels1[1] += r2[1]; TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, src_attrs.stride_z); TENSOR_ITERATOR_ADVANCE_IN_BYTES(weights_iter, weights_attrs.stride_z); } #endif /* WEIGHTS_OPTIMIZATION */ #ifdef BIAS vec2 vec2_b; float b; vec2_b = LOAD_UNPACK2_HALF(biases_ptr, VECTOR_OFFSET(biases_iter, z_index)); if(z_index % uint(2) == uint(0)) { b = vec2_b.x; } else { b = vec2_b.y; } pixels[0] += b; pixels[1] += b; pixels1[0] += b; pixels1[1] += b; #endif /* BIAS */ #ifdef FUSED_ACTIVATION pixels[0] = ACT_OP(pixels[0]); pixels[1] = ACT_OP(pixels[1]); pixels1[0] = ACT_OP(pixels1[0]); pixels1[1] = ACT_OP(pixels1[1]); #endif /* FUSED_ACTIVATION */ STORE_PACK4_CURRENT_ITEM_HALF(dst_ptr, dst_iter, pixels[0]); STORE_PACK4_HALF(dst_ptr, TENSOR3D_OFFSET(dst_iter, 0, 1, 0), pixels[1]); STORE_PACK4_HALF(dst_ptr, TENSOR3D_OFFSET(dst_iter, 0, 2, 0), pixels1[0]); STORE_PACK4_HALF(dst_ptr, TENSOR3D_OFFSET(dst_iter, 0, 3, 0), pixels1[1]); } #elif defined(PROCESS_4X_2Y_2Z) TENSOR_DECLARATION(1, srcBuffer, uvec2, src_ptr, src_shift, 3, readonly); TENSOR_DECLARATION(2, dstBuffer, uvec2, dst_ptr, dst_shift, 3, writeonly); TENSOR_DECLARATION(3, weightsBuffer, uint, weights_ptr, weights_shift, 2, readonly); #ifdef BIAS TENSOR_DECLARATION(4, biasesBuffer, uint, biases_ptr, biases_shift, 2, readonly); #endif /* BIAS */ #if STRIDE_X == 2 #define CONVOLVE(s, w) convolve_stride2(s, w) #elif STRIDE_X == 1 /* STRIDE_X == 1 */ #define CONVOLVE(s, w) convolve_stride1(s, w) #else /* STRIDE_X not equals 1 or 2 */ #error STRIDE_X larger than 2 is not supported #endif /* STRIDE_X == 2 */ vec4[2] convolve_stride1(ImageIterator src_iter, float w) { vec4 s[2]; s[0] = LOAD_UNPACK4_CURRENT_ITEM_HALF(src_ptr, src_iter); s[1] = LOAD_UNPACK4_HALF(src_ptr, IMAGE_OFFSET(src_iter, 0, int(STRIDE_Y))); s[0] *= w; s[1] *= w; return s; } vec4[2] convolve_stride2(ImageIterator src_iter, float w) { vec4 s1[2]; vec4 s2[2]; vec4 r[2]; s1[0] = LOAD_UNPACK4_CURRENT_ITEM_HALF(src_ptr, src_iter); s1[1] = LOAD_UNPACK4_HALF(src_ptr, IMAGE_OFFSET(src_iter, 4, 0)); r[0] = vec4(s1[0].xz, s1[1].xz); s2[0] = LOAD_UNPACK4_HALF(src_ptr, IMAGE_OFFSET(src_iter, 0, int(STRIDE_Y))); s2[1] = LOAD_UNPACK4_HALF(src_ptr, IMAGE_OFFSET(src_iter, 4, int(STRIDE_Y))); r[1] = vec4(s2[0].xz, s2[1].xz); r[0] *= w; r[1] *= w; return r; } void main() { ImageIterator src_iter = CONVERT_TO_IMAGE_ITERATOR(src_attrs, src_shift); Tensor3DIterator weights_iter = CONVERT_TO_TENSOR3D_ITERATOR_NO_STEP(weights_attrs, weights_shift); Tensor3DIterator dst_iter = CONVERT_TO_TENSOR3D_ITERATOR(dst_attrs, dst_shift); #ifdef BIAS VectorIterator biases_iter = CONVERT_TO_VECTOR_ITERATOR_NO_STEP(biases_attrs, biases_shift); #endif /* BIAS */ uint z_base_index = uint(gl_GlobalInvocationID.z) << uint(1); // store orginal src current offset int s_offset_in_bytes = src_iter.current_offset_in_bytes; TENSOR_ITERATOR_ADVANCE_IN_BYTES(weights_iter, z_base_index * weights_stride_w); for(int z = 0; z < 2; ++z) { uint z_index = z_base_index + uint(z); src_iter.current_offset_in_bytes = s_offset_in_bytes; vec4 pixels[2]; pixels[0] = vec4(0.f); pixels[1] = vec4(0.f); #ifdef WEIGHTS_OPTIMIZATION float w1, w2; int nums = (int(weights_depth)) / 2; for(int d = 0; d < nums; ++d) { vec2 vec2_w = LOAD_UNPACK2_CURRENT_ITEM_HALF(weights_ptr, weights_iter); w1 = vec2_w.x; vec4 r1[2] = CONVOLVE(src_iter, w1); pixels[0] += r1[0]; pixels[1] += r1[1]; TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, src_attrs.stride_z); w2 = vec2_w.y; vec4 r2[2] = CONVOLVE(src_iter, w2); pixels[0] += r2[0]; pixels[1] += r2[1]; TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, src_attrs.stride_z); TENSOR_ITERATOR_ADVANCE_IN_BYTES(weights_iter, weights_attrs.stride_z * uint(2)); } #else /* WEIGHTS_OPTIMIZATION */ float w; for(int d = 0; d < int(weights_depth); ++d) { w = LOAD_UNPACK2_CURRENT_ITEM_HALF(weights_ptr, weights_iter).x; vec4 r[2] = CONVOLVE(src_iter, w); pixels[0] += r[0]; pixels[1] += r[1]; TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, src_attrs.stride_z); TENSOR_ITERATOR_ADVANCE_IN_BYTES(weights_iter, weights_attrs.stride_z); } #endif /* WEIGHTS_OPTIMIZATION */ #ifdef BIAS vec2 vec2_b; float b; vec2_b = LOAD_UNPACK2_HALF(biases_ptr, VECTOR_OFFSET(biases_iter, z_index)); if(z_index % uint(2) == uint(0)) { b = vec2_b.x; } else { b = vec2_b.y; } pixels[0] += b; pixels[1] += b; #endif /* BIAS */ #ifdef FUSED_ACTIVATION pixels[0] = ACT_OP(pixels[0]); pixels[1] = ACT_OP(pixels[1]); #endif /* FUSED_ACTIVATION */ STORE_PACK4_CURRENT_ITEM_HALF(dst_ptr, dst_iter, pixels[0]); STORE_PACK4_HALF(dst_ptr, TENSOR3D_OFFSET(dst_iter, 0, 1, 0), pixels[1]); TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, dst_attrs.stride_z); } } #elif defined(PROCESS_8X_1Y_1Z) TENSOR_DECLARATION(1, srcBuffer, uvec4, src_ptr, src_shift, 4, readonly); TENSOR_DECLARATION(2, dstBuffer, uvec4, dst_ptr, dst_shift, 4, writeonly); TENSOR_DECLARATION(3, weightsBuffer, uint, weights_ptr, weights_shift, 2, readonly); #ifdef BIAS TENSOR_DECLARATION(4, biasesBuffer, uint, biases_ptr, biases_shift, 2, readonly); #endif /* BIAS */ #if STRIDE_X == 2 #define CONVOLVE(s, w) convolve_stride2(s, w) #elif STRIDE_X == 1 /* STRIDE_X == 1 */ #define CONVOLVE(s, w) convolve_stride1(s, w) #else /* STRIDE_X not equals 1 or 2 */ #error STRIDE_X larger than 2 is not supported #endif /* STRIDE_X == 2 */ vec4[2] convolve_stride1(ImageIterator src_iter, float w) { vec4 s[2]; s = LOAD_UNPACK8_CURRENT_ITEM_HALF(src_ptr, src_iter); s[0] *= w; s[1] *= w; return s; } vec4[2] convolve_stride2(ImageIterator src_iter, float w) { vec4 s1[2]; vec4 s2[2]; vec4 r[2]; s1 = LOAD_UNPACK8_CURRENT_ITEM_HALF(src_ptr, src_iter); r[0] = vec4(s1[0].xz, s1[1].xz); s2 = LOAD_UNPACK8_HALF(src_ptr, IMAGE_OFFSET(src_iter, 8, 0)); r[1] = vec4(s2[0].xz, s2[1].xz); r[0] *= w; r[1] *= w; return r; } void main() { ImageIterator src_iter = CONVERT_TO_IMAGE_ITERATOR(src_attrs, src_shift); Tensor3DIterator weights_iter = CONVERT_TO_TENSOR3D_ITERATOR_NO_STEP(weights_attrs, weights_shift); Tensor3DIterator dst_iter = CONVERT_TO_TENSOR3D_ITERATOR(dst_attrs, dst_shift); #ifdef BIAS VectorIterator biases_iter = CONVERT_TO_VECTOR_ITERATOR_NO_STEP(biases_attrs, biases_shift); #endif /* BIAS */ vec4 pixels[2]; pixels[0] = vec4(0.f); pixels[1] = vec4(0.f); uint z_index = gl_GlobalInvocationID.z; TENSOR_ITERATOR_ADVANCE_IN_BYTES(weights_iter, z_index * weights_stride_w); #ifdef WEIGHTS_OPTIMIZATION float w1, w2; int nums = (int(weights_depth)) / 2; for(int d = 0; d < nums; ++d) { vec2 vec2_w = LOAD_UNPACK2_CURRENT_ITEM_HALF(weights_ptr, weights_iter); w1 = vec2_w.x; vec4 r1[2] = CONVOLVE(src_iter, w1); pixels[0] += r1[0]; pixels[1] += r1[1]; TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, src_attrs.stride_z); w2 = vec2_w.y; vec4 r2[2] = CONVOLVE(src_iter, w2); pixels[0] += r2[0]; pixels[1] += r2[1]; TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, src_attrs.stride_z); TENSOR_ITERATOR_ADVANCE_IN_BYTES(weights_iter, weights_attrs.stride_z * uint(2)); } #else /* WEIGHTS_OPTIMIZATION */ float w; for(int d = 0; d < int(weights_depth); ++d) { w = LOAD_UNPACK2_CURRENT_ITEM_HALF(weights_ptr, weights_iter).x; vec4 r[2] = CONVOLVE(src_iter, w); pixels[0] += r[0]; pixels[1] += r[1]; TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, src_attrs.stride_z); TENSOR_ITERATOR_ADVANCE_IN_BYTES(weights_iter, weights_attrs.stride_z); } #endif /* WEIGHTS_OPTIMIZATION */ #ifdef BIAS vec2 vec2_b; float b; vec2_b = LOAD_UNPACK2_HALF(biases_ptr, VECTOR_OFFSET(biases_iter, z_index)); if(z_index % uint(2) == uint(0)) { b = vec2_b.x; } else { b = vec2_b.y; } pixels[0] += b; pixels[1] += b; #endif /* BIAS */ #ifdef FUSED_ACTIVATION pixels[0] = ACT_OP(pixels[0]); pixels[1] = ACT_OP(pixels[1]); #endif /* FUSED_ACTIVATION */ STORE_PACK8_CURRENT_ITEM_HALF(dst_ptr, dst_iter, pixels); } #elif defined(PROCESS_8X_2Y_1Z) TENSOR_DECLARATION(1, srcBuffer, uvec4, src_ptr, src_shift, 4, readonly); TENSOR_DECLARATION(2, dstBuffer, uvec4, dst_ptr, dst_shift, 4, writeonly); TENSOR_DECLARATION(3, weightsBuffer, uint, weights_ptr, weights_shift, 2, readonly); #ifdef BIAS TENSOR_DECLARATION(4, biasesBuffer, uint, biases_ptr, biases_shift, 2, readonly); #endif /* BIAS */ #if STRIDE_X == 2 #define CONVOLVE(s, w, x1, y1) convolve_stride2(s, w, x1, y1) #elif STRIDE_X == 1 /* STRIDE_X == 1 */ #define CONVOLVE(s, w, x1, y1) convolve_stride1(s, w, x1, y1) #else /* STRIDE_X not equals 1 or 2 */ #error STRIDE_X larger than 2 is not supported #endif /* STRIDE_X == 2 */ vec4[2] convolve_stride1(ImageIterator src_iter, float w, int x1, int y1) { vec4 s[2]; s = LOAD_UNPACK8_HALF(src_ptr, IMAGE_OFFSET(src_iter, x1, y1)); s[0] *= w; s[1] *= w; return s; } vec4[2] convolve_stride2(ImageIterator src_iter, float w, int x1, int y1) { vec4 s1[2]; vec4 s2[2]; vec4 r[2]; s1 = LOAD_UNPACK8_HALF(src_ptr, IMAGE_OFFSET(src_iter, x1, y1)); r[0] = vec4(s1[0].xz, s1[1].xz); s2 = LOAD_UNPACK8_HALF(src_ptr, IMAGE_OFFSET(src_iter, (8 + x1), y1)); r[1] = vec4(s2[0].xz, s2[1].xz); r[0] *= w; r[1] *= w; return r; } void main() { ImageIterator src_iter = CONVERT_TO_IMAGE_ITERATOR(src_attrs, src_shift); Tensor3DIterator weights_iter = CONVERT_TO_TENSOR3D_ITERATOR_NO_STEP(weights_attrs, weights_shift); Tensor3DIterator dst_iter = CONVERT_TO_TENSOR3D_ITERATOR(dst_attrs, dst_shift); #ifdef BIAS VectorIterator biases_iter = CONVERT_TO_VECTOR_ITERATOR_NO_STEP(biases_attrs, biases_shift); #endif /* BIAS */ vec4 pixels[2]; vec4 pixels1[2]; pixels[0] = vec4(0.f); pixels[1] = vec4(0.f); pixels1[0] = vec4(0.f); pixels1[1] = vec4(0.f); uint z_index = gl_GlobalInvocationID.z; TENSOR_ITERATOR_ADVANCE_IN_BYTES(weights_iter, z_index * weights_stride_w); #ifdef WEIGHTS_OPTIMIZATION float w1, w2; int nums = (int(weights_depth)) / 2; for(int d = 0; d < nums; ++d) { vec2 vec2_w = LOAD_UNPACK2_CURRENT_ITEM_HALF(weights_ptr, weights_iter); w1 = vec2_w.x; vec4 r1[2] = CONVOLVE(src_iter, w1, 0, 0); vec4 r2[2] = CONVOLVE(src_iter, w1, 0, (int(STRIDE_Y))); pixels[0] += r1[0]; pixels[1] += r1[1]; pixels1[0] += r2[0]; pixels1[1] += r2[1]; TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, src_attrs.stride_z); w2 = vec2_w.y; vec4 r3[2] = CONVOLVE(src_iter, w2, 0, 0); vec4 r4[2] = CONVOLVE(src_iter, w2, 0, (int(STRIDE_Y))); pixels[0] += r3[0]; pixels[1] += r3[1]; pixels1[0] += r4[0]; pixels1[1] += r4[1]; TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, src_attrs.stride_z); TENSOR_ITERATOR_ADVANCE_IN_BYTES(weights_iter, weights_attrs.stride_z * uint(2)); } #else /* WEIGHTS_OPTIMIZATION */ float w; for(int d = 0; d < int(weights_depth); ++d) { w = LOAD_UNPACK2_CURRENT_ITEM_HALF(weights_ptr, weights_iter).x; vec4 r1[2] = CONVOLVE(src_iter, w, 0, 0); vec4 r2[2] = CONVOLVE(src_iter, w, 0, (int(STRIDE_Y))); pixels[0] += r1[0]; pixels[1] += r1[1]; pixels1[0] += r2[0]; pixels1[1] += r2[1]; TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, src_attrs.stride_z); TENSOR_ITERATOR_ADVANCE_IN_BYTES(weights_iter, weights_attrs.stride_z); } #endif /* WEIGHTS_OPTIMIZATION */ #ifdef BIAS vec2 vec2_b; float b; vec2_b = LOAD_UNPACK2_HALF(biases_ptr, VECTOR_OFFSET(biases_iter, z_index)); if(z_index % uint(2) == uint(0)) { b = vec2_b.x; } else { b = vec2_b.y; } pixels[0] += b; pixels[1] += b; pixels1[0] += b; pixels1[1] += b; #endif /* BIAS */ #ifdef FUSED_ACTIVATION pixels[0] = ACT_OP(pixels[0]); pixels[1] = ACT_OP(pixels[1]); pixels1[0] = ACT_OP(pixels1[0]); pixels1[1] = ACT_OP(pixels1[1]); #endif /* FUSED_ACTIVATION */ STORE_PACK8_CURRENT_ITEM_HALF(dst_ptr, dst_iter, pixels); STORE_PACK8_HALF(dst_ptr, TENSOR3D_OFFSET(dst_iter, 0, 1, 0), pixels1); } #endif /* PROCESS_4X_1Y_1Z */ #else /* DATA_TYPE_FP32 */ #error Data type not supported #endif /* DATA_TYPE_FP32 */