/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ layout(local_size_x = LOCAL_SIZE_X, local_size_y = LOCAL_SIZE_Y, local_size_z = LOCAL_SIZE_Z) in; #include "helpers_cs.h" #if defined(DATA_TYPE_FP16) precision mediump float; #endif // DATA_TYPE_FP16 #ifdef RESHAPE_TO_COLUMNS /** This kernel performs a reshaping of the input tensor to a tensor used to perform convolution using GEMM. * * @note The data type must be passed at compile time using "#define DATA_TYPE_NAME". e.g. "#define DATA_TYPE_FP32" * @note In case biases will be added to the convolution "#define HAS_BIAS" has to be passed to append the final matrix with 1 in each row. * * @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32 * @param[in] src_attrs The attributes of the source tensor * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr * @param[in] dst_attrs The attributes of the destination tensor * @param[in] biases_ptr Pointer to the biases tensor. Same as @p src_ptr * @param[in] biases_attrs The attributes of the biases tensor * @param[in] width The width of the input tensor * @param[in] height The height of the input tensor * @param[in] depth The depth of the input tensor * @param[in] total_filters Total number of filters. 4th dimension of the weights matrix */ SHADER_PARAMS_DECLARATION { Tensor3DAttributes src_attrs; ImageAttributes dst_attrs; #ifdef HAS_BIAS VectorAttributes biases_attrs; #endif /* HAS_BIAS */ uint width; uint height; uint depth; uint total_filters; }; #if defined(DATA_TYPE_FP32) TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly); TENSOR_DECLARATION(2, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly); #ifdef HAS_BIAS TENSOR_DECLARATION(3, biasesBuffer, float, biases_ptr, biases_shift, 2, readonly); #endif /* BIAS */ void main() { Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR(src_attrs, src_shift); ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(dst_attrs, dst_shift); #ifdef HAS_BIAS VectorIterator biases_iter = CONVERT_TO_VECTOR_ITERATOR_NO_STEP(biases_attrs, biases_shift); #endif /* BIAS */ bool is_last_thread = (((int(gl_GlobalInvocationID.x)) == (int(gl_NumWorkGroups.x * gl_WorkGroupSize.x) - 1)) && ((int(gl_GlobalInvocationID.y)) == (int(gl_NumWorkGroups.y * gl_WorkGroupSize.y) - 1)) && ((int(gl_GlobalInvocationID.z)) == (int(gl_NumWorkGroups.z * gl_WorkGroupSize.z) - 1))); TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, ((uint(gl_GlobalInvocationID.x) * uint(dst_attrs.stride_y)) + (uint(gl_GlobalInvocationID.y) * uint(width) * uint(dst_attrs.stride_y)) + (uint( gl_GlobalInvocationID.z) * uint(width) * uint(height) * uint(dst_attrs.stride_y)))); // Linearize convolution elements if(is_last_thread) { for(uint i = 0u; i < uint(total_filters); ++i) { float s0 = LOAD_CURRENT_ITEM(src_ptr, src_iter); STORE_CURRENT_ITEM(dst_ptr, dst_iter, s0); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, (depth * src_attrs.stride_z)); #ifdef HAS_BIAS float b = LOAD_CURRENT_ITEM(biases_ptr, biases_iter); STORE(dst_ptr, TENSOR_OFFSET_ADVANCE_IN_BYTES(dst_iter, dst_attrs.stride_y), b); TENSOR_ITERATOR_ADVANCE_IN_BYTES(biases_iter, biases_attrs.stride_x); #endif /* HAS_BIAS */ TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, dst_attrs.stride_x); } } else { for(uint i = 0u; i < uint(total_filters); ++i) { float s0 = LOAD_CURRENT_ITEM(src_ptr, src_iter); STORE_CURRENT_ITEM(dst_ptr, dst_iter, s0); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, (depth * src_attrs.stride_z)); TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, dst_attrs.stride_x); } } } #elif defined(DATA_TYPE_FP16) TENSOR_DECLARATION(1, srcBuffer, uint, src_ptr, src_shift, 2, readonly); TENSOR_DECLARATION(2, dstBuffer, uint, dst_ptr, dst_shift, 2, writeonly); #ifdef HAS_BIAS TENSOR_DECLARATION(3, biasesBuffer, uint, biases_ptr, biases_shift, 2, readonly); #endif /* BIAS */ void main() { Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR(src_attrs, src_shift); ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(dst_attrs, dst_shift); #ifdef HAS_BIAS VectorIterator biases_iter = CONVERT_TO_VECTOR_ITERATOR_NO_STEP(biases_attrs, biases_shift); #endif /* BIAS */ bool is_last_thread = (((int(gl_GlobalInvocationID.x)) == (int(gl_NumWorkGroups.x * gl_WorkGroupSize.x) - 1)) && ((int(gl_GlobalInvocationID.y)) == (int(gl_NumWorkGroups.y * gl_WorkGroupSize.y) - 1)) && ((int(gl_GlobalInvocationID.z)) == (int(gl_NumWorkGroups.z * gl_WorkGroupSize.z) - 1))); TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, ((uint(gl_GlobalInvocationID.x) * uint(dst_attrs.stride_y)) + (uint(gl_GlobalInvocationID.y) * uint(width) * uint(dst_attrs.stride_y)) + (uint( gl_GlobalInvocationID.z) * uint(width) * uint(height) * uint(dst_attrs.stride_y)))); // Linearize convolution elements if(is_last_thread) { for(uint i = 0u; i < uint(total_filters); i = i + 2u) { vec2 s0 = LOAD_UNPACK2_CURRENT_ITEM_HALF(src_ptr, src_iter); vec2 s; if(int(CURRENT_ITEM_OFFSET_IN_BYTES(src_iter) >> 1u) % 2 == 0) { s.x = s0.x; } else { s.x = s0.y; } TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, (depth * src_attrs.stride_z)); vec2 s1 = LOAD_UNPACK2_CURRENT_ITEM_HALF(src_ptr, src_iter); if(int(CURRENT_ITEM_OFFSET_IN_BYTES(src_iter) >> 1u) % 2 == 0) { s.y = s1.x; } else { s.y = s1.y; } STORE_PACK2_CURRENT_ITEM_HALF(dst_ptr, dst_iter, s); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, (depth * src_attrs.stride_z)); #ifdef HAS_BIAS vec2 b = LOAD_UNPACK2_CURRENT_ITEM_HALF(biases_ptr, biases_iter); STORE_PACK2_HALF(dst_ptr, TENSOR_OFFSET_ADVANCE_IN_BYTES(dst_iter, dst_attrs.stride_y), b); TENSOR_ITERATOR_ADVANCE_IN_BYTES(biases_iter, (2u * biases_attrs.stride_x)); #endif /* HAS_BIAS */ TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, (2u * dst_attrs.stride_x)); } } else { for(uint i = 0u; i < uint(total_filters); i = i + 2u) { vec2 s0 = LOAD_UNPACK2_CURRENT_ITEM_HALF(src_ptr, src_iter); vec2 s; if(int(CURRENT_ITEM_OFFSET_IN_BYTES(src_iter) >> 1u) % 2 == 0) { s.x = s0.x; } else { s.x = s0.y; } TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, (depth * src_attrs.stride_z)); vec2 s1 = LOAD_UNPACK2_CURRENT_ITEM_HALF(src_ptr, src_iter); if(int(CURRENT_ITEM_OFFSET_IN_BYTES(src_iter) >> 1u) % 2 == 0) { s.y = s1.x; } else { s.y = s1.y; } STORE_PACK2_CURRENT_ITEM_HALF(dst_ptr, dst_iter, s); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, (depth * src_attrs.stride_z)); TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, (2u * dst_attrs.stride_x)); } } } #endif /* DATA_TYPE_FP32 */ #endif // RESHAPE_TO_COLUMNS #ifdef IM2COL_GENERIC /** This kernel performs a reshaping of the input tensor to a tensor used to perform convolution using GEMM. * * @note The data type must be passed at compile time using "#define DATA_TYPE_FP32" * @note PAD_LEFT/PAD_RIGHT/PAD_TOP/PAD_BOTTOM must be passed for padding info, e.g. "#define PAD_LEFT xxx" * @note KERNEL_WIDTH/KERNEL_HEIGHT/KERNEL_DEPTH must be passed for kernel dimension, e.g. "#define KERNEL_WIDTH xxx" * @note STRIDE_X/STRIDE_Y must be passed for stride info, e.g. "#define STRIDE_X xxx" * @note CONVOLVED_WIDTH/CONVOLVED_HEIGHT must be passed for convolved dimension, e.g. "#define CONVOLVED_WIDTH xxx" * @note SRC_WIDTH/SRC_HEIGHT must be passed for input dimension, e.g. "#define SRC_WIDTH xxx" * @note DILATION_X/DILATION_Y must be passed for dilation sizes, e.g. "#define DILATION_X xxx" * @note In case biases will be added to the convolution "#define HAS_BIAS" has to be passed to append the final matrix with 1 in each row. * * @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32 * @param[in] src_attrs The attributes of the source tensor * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr * @param[in] dst_attrs The attributes of the destination tensor * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes). * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes). */ SHADER_PARAMS_DECLARATION { Tensor3DAttributes src_attrs; ImageAttributes dst_attrs; uint src_stride_w; uint dst_stride_w; }; #ifdef DATA_TYPE_FP32 TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly); TENSOR_DECLARATION(2, dstBuffer, float, dst_ptr, dst_shift, 2, restrict); void main(void) { Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR_NO_STEP(src_attrs, src_shift); ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(dst_attrs, dst_shift); int xc = int(gl_GlobalInvocationID.x); // x coordinate in the convolved tensor int yc = int(gl_GlobalInvocationID.y); // y coordinate in the convolved tensor int ch = int(gl_GlobalInvocationID.z) % KERNEL_DEPTH; // input feature map int batch = int(gl_GlobalInvocationID.z) / KERNEL_DEPTH; // the batch // Calculate input indeces int xi = xc * STRIDE_X - PAD_LEFT; int yi = yc * STRIDE_Y - PAD_TOP; TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, (ch * int(src_attrs.stride_z)) + (batch * int(src_stride_w))); // Calculate output indeces int xo = ch * KERNEL_WIDTH * KERNEL_HEIGHT; int yo = xc + yc * CONVOLVED_WIDTH; // Index of the convolution // sizeof is not available in GLES, so we'll use stride_x TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, (yo * int(dst_attrs.stride_y)) + (batch * int(dst_stride_w)) + xo * int(dst_attrs.stride_x)); uint src_pos = 0u; // Linearize convolution elements for(int y = yi, y_e = yi + KERNEL_HEIGHT * DILATION_Y; y < y_e; y += DILATION_Y) { for(int x = xi, x_e = xi + KERNEL_WIDTH * DILATION_X; x < x_e; x += DILATION_X, TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, int(dst_attrs.stride_x))) { #if PAD_LEFT == 0 && PAD_TOP == 0 && PAD_RIGHT == 0 && PAD_BOTTOM == 0 src_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, x * int(src_attrs.stride_x) + y * int(src_attrs.stride_y)); STORE_CURRENT_ITEM(dst_ptr, dst_iter, LOAD(src_ptr, src_pos)); #else /* PAD_LEFT == 0 && PAD_TOP == 0 && PAD_RIGHT == 0 && PAD_BOTTOM == 0 */ if(x < 0 || x >= SRC_WIDTH || y < 0 || y >= SRC_HEIGHT) { STORE_CURRENT_ITEM(dst_ptr, dst_iter, 0.0f); } else { src_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, x * int(src_attrs.stride_x) + y * int(src_attrs.stride_y)); STORE_CURRENT_ITEM(dst_ptr, dst_iter, LOAD(src_ptr, src_pos)); } #endif /* PAD_LEFT == 0 && PAD_TOP == 0 && PAD_RIGHT == 0 && PAD_BOTTOM == 0 */ } } #ifdef HAS_BIAS if(ch == (KERNEL_DEPTH - 1)) { STORE_CURRENT_ITEM(dst_ptr, dst_iter, 1.0f); } #endif /* HAS_BIAS */ } #elif defined(DATA_TYPE_FP16) TENSOR_DECLARATION(1, srcBuffer, uint, src_ptr, src_shift, 2, readonly); TENSOR_DECLARATION(2, dstBuffer, uint, dst_ptr, dst_shift, 2, writeonly); #ifdef KERNEL_1x1 void main(void) { Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR_NO_STEP(src_attrs, src_shift); ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(dst_attrs, dst_shift); uint xc = gl_GlobalInvocationID.x; uint yc = gl_GlobalInvocationID.y; uint zc = gl_GlobalInvocationID.z; uint ch = zc % uint(KERNEL_DEPTH); // input feature map uint batch = zc / uint(KERNEL_DEPTH); // the batch // Calculate input indeces uint xi = xc; uint yi = yc; TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, batch * src_stride_w + ch * src_attrs.step_z); // Calculate output indeces uint dst_element_count = dst_attrs.step_x / dst_attrs.stride_x; uint xo = ch * dst_element_count; uint yo = xc + yc * uint(CONVOLVED_WIDTH); TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, batch * dst_stride_w + yo * dst_attrs.stride_y + xo); bool x_start_even = ((xc % 2u) == 0u); bool z_depth_even = ((uint(KERNEL_DEPTH) % 2u) == 0u); uint input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, xi * src_attrs.stride_x + yi * src_attrs.stride_y); uint tmp_left = 0u; uint tmp_right = 0u; if(ch % 2u != 0u) { return; } if(z_depth_even || (!z_depth_even && (int(ch) < (KERNEL_DEPTH - 1)))) { tmp_left = LOAD(src_ptr, input_pos); input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, xi * src_attrs.stride_x + yi * src_attrs.stride_y + src_attrs.stride_z); tmp_right = LOAD(src_ptr, input_pos); if(x_start_even) { tmp_right = (tmp_left & 0xffffu) + (tmp_right << 16u); } else { tmp_right = (tmp_left >> 16u) + (tmp_right & 0xffff0000u); } STORE_CURRENT_ITEM(dst_ptr, dst_iter, tmp_right); TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, dst_attrs.step_x); #ifdef HAS_BIAS if(ch == (uint(KERNEL_DEPTH) - 2u)) { mediump vec2 bias_vec = vec2(1.f, 0.f); uint bias_u = packHalf2x16(bias_vec); STORE_CURRENT_ITEM(dst_ptr, dst_iter, bias_u); } #endif /* HAS_BIAS */ } else { tmp_left = LOAD(src_ptr, input_pos); if(x_start_even) { tmp_right = (tmp_left & 0xffffu); } else { tmp_right = (tmp_left >> 16u); } #ifdef HAS_BIAS mediump vec2 bias_vec = vec2(0.f, 1.f); uint bias_u = packHalf2x16(bias_vec); tmp_right += (bias_u & 0xffff0000u); #endif /* HAS_BIAS */ STORE_CURRENT_ITEM(dst_ptr, dst_iter, tmp_right); } } #else /* KERNEL_1x1 */ void main(void) { uint xc = gl_GlobalInvocationID.x; uint yc = gl_GlobalInvocationID.y; uint zc = gl_GlobalInvocationID.z; uint ch = zc % uint(KERNEL_DEPTH); // input feature map uint batch = zc / uint(KERNEL_DEPTH); // the batch Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR_NO_STEP(src_attrs, src_shift); Tensor3DIterator src_iter_b = CONVERT_TO_TENSOR3D_ITERATOR_NO_STEP(src_attrs, src_shift); ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(dst_attrs, dst_shift); // Calculate input indeces uint src_element_count = src_attrs.step_x / src_attrs.stride_x; uint xi = (xc * uint(STRIDE_X)) / src_element_count; uint yi = yc * uint(STRIDE_Y); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, batch * src_stride_w + ch * src_attrs.stride_z); // Calculate output indeces uint dst_element_count = dst_attrs.step_x / dst_attrs.stride_x; uint xo = (ch * uint(KERNEL_WIDTH) * uint(KERNEL_HEIGHT)) * dst_element_count; uint yo = xc + yc * uint(CONVOLVED_WIDTH); TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, batch * dst_stride_w + yo * dst_attrs.stride_y + xo); bool x_start_even = ((xc * uint(STRIDE_X)) % 2u == 0u); bool z_start_even = ((ch % 2u) == 0u); uint input_pos = 0u; uint tmp = 0u; uint tmp_left = 0u; uint tmp_right = 0u; // Linearize convolution elements for(uint y = yi, y_e = yi + uint(KERNEL_HEIGHT); y < y_e; ++y) { uint xstart = 0u; uint xend = 0u; // even col, even row if(x_start_even) { if(((y - yi + ch) % 2u) == 0u) { for(uint x = xi, x_e = xi + (uint(KERNEL_WIDTH) / 2u); x < x_e; ++x, TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, dst_attrs.step_x)) { input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, x * src_attrs.step_x + y * src_attrs.stride_y); STORE_CURRENT_ITEM(dst_ptr, dst_iter, LOAD(src_ptr, input_pos)); } } else { // 1st pair if(!z_start_even && (y == yi)) { // cross 2d feature map input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter_b, (xi + (uint(KERNEL_WIDTH) / 2u)) * src_attrs.step_x + (yi + uint(KERNEL_HEIGHT) - 1u) * src_attrs.stride_y + batch * src_stride_w + (ch - 1u) * src_attrs.stride_z); } else { input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, (xi + (uint(KERNEL_WIDTH) / 2u)) * src_attrs.step_x + (y - 1u) * src_attrs.stride_y); } tmp_right = LOAD(src_ptr, input_pos); input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, xi * src_attrs.step_x + y * src_attrs.stride_y); tmp_left = LOAD(src_ptr, input_pos); tmp_right = (tmp_right & 0xffffu) + (tmp_left << 16u); STORE_CURRENT_ITEM(dst_ptr, dst_iter, tmp_right); TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, dst_attrs.step_x); // remaining for(uint x = xi + 1u, x_e = xi + (uint(KERNEL_WIDTH) / 2u) + 1u; x < x_e; ++x, TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, dst_attrs.step_x)) { input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, (x - 1u) * src_attrs.step_x + y * src_attrs.stride_y); tmp_left = LOAD(src_ptr, input_pos); input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, x * src_attrs.step_x + y * src_attrs.stride_y); tmp_right = LOAD(src_ptr, input_pos); tmp_right = (tmp_left >> 16u) + (tmp_right << 16u); STORE_CURRENT_ITEM(dst_ptr, dst_iter, tmp_right); } } } else { if((((y - yi) % 2u) == 0u && !z_start_even) || (((y - yi) % 2u) != 0u && z_start_even)) { // 1st pair if(y == yi) { // cross 2d feature map input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter_b, (xi + (uint(KERNEL_WIDTH) / 2u)) * src_attrs.step_x + (yi + uint(KERNEL_HEIGHT) - 1u) * src_attrs.stride_y + batch * src_stride_w + (ch - 1u) * src_attrs.stride_z); } else { input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, (xi + (uint(KERNEL_WIDTH) / 2u)) * src_attrs.step_x + (y - 1u) * src_attrs.stride_y); } tmp_right = LOAD(src_ptr, input_pos); input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, xi * src_attrs.step_x + y * src_attrs.stride_y); tmp_left = LOAD(src_ptr, input_pos); tmp_right = (tmp_right >> 16u) + (tmp_left & 0xffff0000u); STORE_CURRENT_ITEM(dst_ptr, dst_iter, tmp_right); TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, dst_attrs.step_x); // remaining for(uint x = xi + 1u, x_e = xi + (uint(KERNEL_WIDTH) / 2u) + 1u; x < x_e; ++x, TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, dst_attrs.step_x)) { input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, x * src_attrs.step_x + y * src_attrs.stride_y); STORE_CURRENT_ITEM(dst_ptr, dst_iter, LOAD(src_ptr, input_pos)); } } else if((((y - yi) % 2u) == 0u && z_start_even) || (((y - yi) % 2u) != 0u && !z_start_even)) { // 1st pair input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, xi * src_attrs.step_x + y * src_attrs.stride_y); tmp_right = LOAD(src_ptr, input_pos); input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, (xi + 1u) * src_attrs.step_x + y * src_attrs.stride_y); tmp_left = LOAD(src_ptr, input_pos); tmp_right = (tmp_right >> 16u) + (tmp_left << 16u); STORE_CURRENT_ITEM(dst_ptr, dst_iter, tmp_right); TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, dst_attrs.step_x); // remaining for(uint x = xi + 1u, x_e = xi + (uint(KERNEL_WIDTH) / 2u); x < x_e; ++x, TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, dst_attrs.step_x)) { input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, x * src_attrs.step_x + y * src_attrs.stride_y); tmp_right = LOAD(src_ptr, input_pos); input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, (x + 1u) * src_attrs.step_x + y * src_attrs.stride_y); tmp_left = LOAD(src_ptr, input_pos); tmp_right = (tmp_right >> 16u) + (tmp_left << 16u); STORE_CURRENT_ITEM(dst_ptr, dst_iter, tmp_right); } } } } // NOTE: must handle last element manually instead of in loops // to avoid write conflict across 2d boundary if(ch == uint(KERNEL_DEPTH) - 1u) { uint x = xi + (uint(KERNEL_WIDTH) / 2u); uint y = yi + uint(KERNEL_HEIGHT) - 1u; input_pos = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, x * src_attrs.step_x + y * src_attrs.stride_y); tmp = LOAD(src_ptr, input_pos); if(!x_start_even) { tmp = (tmp >> 16u) + (tmp << 16u); } #ifdef HAS_BIAS mediump vec2 bias_vec = vec2(1.f, 1.f); uint bias_u = packHalf2x16(bias_vec); if(z_start_even) { tmp = (tmp & 0xffffu) + (bias_u & 0xffff0000u); } else { tmp = (bias_u & 0xffffu); } #endif /* HAS_BIAS */ STORE_CURRENT_ITEM(dst_ptr, dst_iter, tmp); } } #endif /* KERNEL_1x1 */ #else /* DATA_TYPE_FP32 */ #error Data type not supported #endif /* DATA_TYPE_FP32 */ #endif /* IM2COL_GENERIC */ #ifdef IM2COL_REDUCED /** This kernel reshapes the tensor's low three dimensions to single row for GEMM operation * * @note The data type must be passed at compile time using "#define DATA_TYPE_FP16" * @note In case biases will be added in late stage, "#define HAS_BIAS" has to be passed to append the final matrix with 1 in each row. * * @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32 * @param[in] src_attrs The attributes of the source tensor * @param[out] dst_ptr Pointer to the destination tensor. Same as @p src_ptr * @param[in] dst_attrs The attributes of the destination tensor * @param[in] width The width of the input tensor * @param[in] height The height of the input tensor */ SHADER_PARAMS_DECLARATION { Tensor3DAttributes src_attrs; VectorAttributes dst_attrs; uint width; uint height; }; #ifdef DATA_TYPE_FP32 TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly); TENSOR_DECLARATION(2, dstBuffer, float, dst_ptr, dst_shift, 2, restrict); void main(void) { Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR(src_attrs, src_shift); VectorIterator dst_iter = CONVERT_TO_VECTOR_ITERATOR_NO_STEP(dst_attrs, dst_shift); uvec3 pos = uvec3(gl_GlobalInvocationID.xyz); uvec3 size = uvec3(gl_WorkGroupSize.xyz); uint image_size = width * height; uint tmp_out_offset = VECTOR_OFFSET(dst_iter, pos.x + pos.y * width + pos.z * image_size); STORE(dst_ptr, tmp_out_offset, LOAD_CURRENT_ITEM(src_ptr, src_iter)); #ifdef HAS_BIAS // If it is the last thread in the 3 dimensional workgroup if(pos.x == (size.x - 1) && pos.y == (size.y - 1) && pos.z == (size.z - 1)) { tmp_out_offset += (dst_attrs.stride_x >> uint(2)); STORE(dst_ptr, tmp_out_offset, 1.f); } #endif // HAS_BIAS } #elif defined(DATA_TYPE_FP16) #if defined(IM2COL_REDUCED_8X) TENSOR_DECLARATION(1, srcBuffer, uvec4, src_ptr, src_shift, 4, readonly); TENSOR_DECLARATION(2, dstBuffer, uvec4, dst_ptr, dst_shift, 4, restrict); #elif defined(IM2COL_REDUCED_4X) /* IM2COL_REDUCED_8X */ TENSOR_DECLARATION(1, srcBuffer, uvec2, src_ptr, src_shift, 3, readonly); TENSOR_DECLARATION(2, dstBuffer, uvec2, dst_ptr, dst_shift, 3, restrict); #else /* IM2COL_REDUCED_8X */ TENSOR_DECLARATION(1, srcBuffer, uint, src_ptr, src_shift, 2, readonly); TENSOR_DECLARATION(2, dstBuffer, uint, dst_ptr, dst_shift, 2, restrict); #endif /* IM2COL_REDUCED_8X */ #if defined(IM2COL_REDUCED_GENERIC) void main(void) { Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR(src_attrs, src_shift); Tensor3DIterator src_nostep_iter = CONVERT_TO_TENSOR3D_ITERATOR_NO_STEP(src_attrs, src_shift); VectorIterator dst_iter = CONVERT_TO_VECTOR_ITERATOR_NO_STEP(dst_attrs, dst_shift); uvec3 pos = uvec3(gl_GlobalInvocationID.xyz); uvec3 size = uvec3(gl_WorkGroupSize.xyz); uint image_size = width * height; uint element_count = src_attrs.step_x / src_attrs.stride_x; uint tmp_out_offset = VECTOR_OFFSET(dst_iter, pos.x * element_count + pos.y * width + pos.z * image_size); uint width_fp16 = (width + uint(1)) >> uint(1); uint tmp; // odd width if(width % uint(2) != uint(0)) { // even row if((pos.y + pos.z * height) % uint(2) == uint(0)) { // skip last element of each line to avoid write conflict except for last line if((pos.x < (width / element_count)) || ((pos.y == gl_NumWorkGroups.y - 1u) && (pos.z == gl_NumWorkGroups.z - 1u))) { tmp = LOAD_CURRENT_ITEM(src_ptr, src_iter); STORE(dst_ptr, tmp_out_offset, tmp); } } else { // special op uint tmp_left = uint(0); uint tmp_right = uint(0); tmp_right = LOAD_CURRENT_ITEM(src_ptr, src_iter); //right half if(pos.x == uint(0)) { tmp_left = LOAD(src_ptr, TENSOR3D_OFFSET(src_nostep_iter, int(width), int(pos.y) - 1, int(pos.z))); //left half tmp_right = (tmp_left & uint(0xffff)) + (tmp_right << uint(16)); } else { tmp_left = LOAD(src_ptr, TENSOR3D_OFFSET(src_nostep_iter, (int(pos.x) - 1) * int(element_count), int(pos.y), int(pos.z))); tmp_right = ((tmp_left >> uint(16)) + (tmp_right << uint(16))); } STORE(dst_ptr, tmp_out_offset, tmp_right); } } else { tmp = LOAD_CURRENT_ITEM(src_ptr, src_iter); STORE(dst_ptr, tmp_out_offset, tmp); } #ifdef HAS_BIAS // If it is the last thread in the 3 dimensional workgroup if(pos.x == (size.x - 1u) && pos.y == (size.y - 1u) && pos.z == (size.z - 1u)) { tmp_out_offset += (dst_attrs.stride_x >> dst_shift); // FIXME: need odd/even detection for tmp_out_offset? mediump vec2 bias_vec = vec2(1.0f, 1.0f); STORE_PACK2_HALF(dst_ptr, tmp_out_offset, bias_vec); } #endif // HAS_BIAS } #else /* IM2COL_REDUCED_GENERIC */ void main(void) { Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR(src_attrs, src_shift); VectorIterator dst_iter = CONVERT_TO_VECTOR_ITERATOR_NO_STEP(dst_attrs, dst_shift); uvec3 pos = uvec3(gl_GlobalInvocationID.xyz); #if defined(IM2COL_REDUCED_8X) uint tmp_out_offset = VECTOR_OFFSET(dst_iter, pos.x * uint(8) + pos.y * width + pos.z * uint(IMAGE_SIZE)); uvec4 tmp = LOAD_CURRENT_ITEM(src_ptr, src_iter); STORE(dst_ptr, tmp_out_offset, tmp); #elif defined(IM2COL_REDUCED_4X) /* IM2COL_REDUCED_8X */ uint tmp_out_offset = VECTOR_OFFSET(dst_iter, pos.x * uint(4) + pos.y * width + pos.z * uint(IMAGE_SIZE)); uvec2 tmp = LOAD_CURRENT_ITEM(src_ptr, src_iter); STORE(dst_ptr, tmp_out_offset, tmp); #else /* IM2COL_REDUCED_8X */ uint tmp_out_offset = VECTOR_OFFSET(dst_iter, pos.x * uint(2) + pos.y * width + pos.z * uint(IMAGE_SIZE)); uint tmp = LOAD_CURRENT_ITEM(src_ptr, src_iter); STORE(dst_ptr, tmp_out_offset, tmp); #endif /* IM2COL_REDUCED_8X */ } #endif /* IM2COL_REDUCED_GENERIC */ #else /* DATA_TYPE_FP32 */ #error Data type not supported #endif /* DATA_TYPE_FP32 */ #endif /* IM2COL_REDUCED */ #ifdef COL2IM #ifdef WIDTH_OUTPUT /** This kernel performs a reshaping of the output of the convolution layer. * * @note The data type must be passed at compile time using "#define DATA_TYPE_FP32" * * @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32 * @param[in] src_attrs The attributes of the source tensor * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr * @param[in] dst_attrs The attributes of the destination tensor * @param[in] dst_depth The length of the destination tensor in Z dimension * @param[in] dst_strideZ The actual stride of the destination tensor in Z dimension */ SHADER_PARAMS_DECLARATION { Tensor3DAttributes src_attrs; Tensor3DAttributes dst_attrs; uint dst_depth; uint dst_strideZ; }; #ifdef DATA_TYPE_FP32 TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly); TENSOR_DECLARATION(2, dstBuffer, float, dst_ptr, dst_shift, 2, restrict); void main(void) { Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR_NO_STEP(src_attrs, src_shift); Tensor3DIterator dst_iter = CONVERT_TO_TENSOR3D_ITERATOR(dst_attrs, dst_shift); uvec3 pos = uvec3(gl_GlobalInvocationID.xyz); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src_iter, pos.x * src_attrs.step_y + pos.y * uint(WIDTH_OUTPUT) * src_attrs.step_y + (pos.z % dst_depth) * src_attrs.stride_x + (pos.z / dst_depth) * dst_strideZ); STORE_CURRENT_ITEM(dst_ptr, dst_iter, LOAD_CURRENT_ITEM(src_ptr, src_iter)); } #elif defined(DATA_TYPE_FP16) TENSOR_DECLARATION(1, srcBuffer, uint, src_ptr, src_shift, 2, readonly); TENSOR_DECLARATION(2, dstBuffer, uint, dst_ptr, dst_shift, 2, restrict); void main(void) { Tensor3DIterator src_iter = CONVERT_TO_TENSOR3D_ITERATOR_NO_STEP(src_attrs, src_shift); Tensor3DIterator dst_iter = CONVERT_TO_TENSOR3D_ITERATOR(dst_attrs, dst_shift); uvec3 pos = uvec3(gl_GlobalInvocationID.xyz); if((pos.z % dst_depth) % 2u == 0u) { uint common_offset_in_bytes = pos.x * src_attrs.step_y * 2u + pos.y * uint(WIDTH_OUTPUT) * src_attrs.step_y + (pos.z % dst_depth) * src_attrs.stride_x + (pos.z / dst_depth) * dst_strideZ; uint tmp1_in_offset = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, common_offset_in_bytes); uint tmp2_in_offset = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, common_offset_in_bytes + src_attrs.step_y); vec2 tmp1 = LOAD_UNPACK2_HALF(src_ptr, tmp1_in_offset); vec2 tmp2 = LOAD_UNPACK2_HALF(src_ptr, tmp2_in_offset); vec2 result = vec2(tmp1.x, tmp2.x); STORE_PACK2_CURRENT_ITEM_HALF(dst_ptr, dst_iter, result); } else { uint common_offset_in_bytes = pos.x * src_attrs.step_y * 2u + pos.y * uint(WIDTH_OUTPUT) * src_attrs.step_y + (pos.z % dst_depth) * src_attrs.stride_x + (pos.z / dst_depth) * dst_strideZ - 2u; uint tmp1_in_offset = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, common_offset_in_bytes); uint tmp2_in_offset = TENSOR_OFFSET_ADVANCE_IN_BYTES(src_iter, common_offset_in_bytes + src_attrs.step_y); vec2 tmp1 = LOAD_UNPACK2_HALF(src_ptr, tmp1_in_offset); vec2 tmp2 = LOAD_UNPACK2_HALF(src_ptr, tmp2_in_offset); vec2 result = vec2(tmp1.y, tmp2.y); STORE_PACK2_CURRENT_ITEM_HALF(dst_ptr, dst_iter, result); } } #else /* DATA_TYPE_FP32 */ #error Data type not supported #endif /* DATA_TYPE_FP32 */ #endif /* WIDTH_OUTPUT */ #endif /* COL2IM */