/* * Copyright (c) 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ layout(local_size_x = LOCAL_SIZE_X, local_size_y = LOCAL_SIZE_Y, local_size_z = LOCAL_SIZE_Z) in; #include "helpers.h" #ifdef DATA_TYPE_FP32 precision highp float; #elif defined(DATA_TYPE_FP16) precision mediump float; #endif /*DATA_TYPE_FP32*/ #define ADD_OP(a, b) ((a) + (b)) #define SUB_OP(a, b) ((a) - (b)) #define MUL_OP(a, b) ((a) * (b)) #define INVSQRT_OP(a) inversesqrt((a)) #define SQCVT_SAT(a) (a) layout(std140) uniform shader_params { TENSOR3D_PARAM_DECLARATION(src); TENSOR3D_PARAM_DECLARATION(dst); VECTOR_PARAM_DECLARATION(mean); VECTOR_PARAM_DECLARATION(var); VECTOR_PARAM_DECLARATION(beta); VECTOR_PARAM_DECLARATION(gamma); }; #ifdef DATA_TYPE_FP32 BUFFER_DECLARATION(src, 1, float, readonly); BUFFER_DECLARATION(dst, 2, float, writeonly); BUFFER_DECLARATION(mean, 3, float, readonly); BUFFER_DECLARATION(var, 4, float, readonly); BUFFER_DECLARATION(beta, 5, float, readonly); BUFFER_DECLARATION(gamma, 6, float, readonly); /** Apply batch normalization. * * @note Epsilon parameter in the batch normalization equation should be given as a preprocessor argument using "#define EPSILON". e.g. "#define EPSILON 0.1" * * @param[in] src_ptr Pointer to the first source tensor. Supported data types: F32 * @param[in] src_stride_x Stride of the first source tensor in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the first source tensor in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_stride_z Stride of the first source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the first source tensor * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor * @param[in] mean_ptr Pointer to the mean source tensor. Supported data types: same as @p src_ptr * @param[in] mean_stride_x Stride of the mean source tensor in X dimension (in bytes) * @param[in] mean_step_x mean_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] mean_offset_first_element_in_bytes The offset of the first element in the mean source tensor * @param[in] var_ptr Pointer to the var tensor. Supported data types: same as @p src_ptr * @param[in] var_stride_x Stride of the var tensor in X dimension (in bytes) * @param[in] var_step_x var_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] var_offset_first_element_in_bytes The offset of the first element in the var source tensor * @param[in] beta_ptr Pointer to the beta source tensor. Supported data types: same as @p src_ptr * @param[in] beta_stride_x Stride of the beta source tensor in X dimension (in bytes) * @param[in] beta_step_x beta_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] beta_offset_first_element_in_bytes The offset of the first element in the beta source tensor * @param[in] gamma_ptr Pointer to the gamma source tensor. Supported data types: same as @p src_ptr * @param[in] gamma_stride_x Stride of the gamma source tensor in X dimension (in bytes) * @param[in] gamma_step_x gamma_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] gamma_offset_first_element_in_bytes The offset of the first element in the gamma source tensor */ void main(void) { Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src); Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst); Vector mean = CONVERT_TO_VECTOR_STRUCT(mean); Vector var = CONVERT_TO_VECTOR_STRUCT(var); Vector beta = CONVERT_TO_VECTOR_STRUCT(beta); Vector gamma = CONVERT_TO_VECTOR_STRUCT(gamma); float input_value = 0.f; float denominator = 0.f; float numerator = 0.f; float x_bar = 0.f; float gamma_param = 0.f; float beta_param = 0.f; uint current_slice = gl_GlobalInvocationID.z; input_value = src_ptr[src.current_offset]; denominator = var_ptr[var.current_offset + (current_slice * var.stride_x) >> 2]; denominator = INVSQRT_OP(ADD_OP(denominator, SQCVT_SAT(float(ESPILON)))); // Calculate x bar and store results numerator = mean_ptr[mean.current_offset + (current_slice * mean.stride_x) >> 2]; numerator = SUB_OP(input_value, numerator); x_bar = MUL_OP(numerator, denominator); gamma_param = gamma_ptr[gamma.current_offset + (current_slice * beta.stride_x) >> 2]; beta_param = beta_ptr[beta.current_offset + (current_slice * beta.stride_x) >> 2]; dst_ptr[dst.current_offset] = ADD_OP(MUL_OP(gamma_param, x_bar), beta_param); } #elif defined(DATA_TYPE_FP16) BUFFER_DECLARATION(src, 1, uint, ); BUFFER_DECLARATION(dst, 2, uint, writeonly); BUFFER_DECLARATION(mean, 3, uint, ); BUFFER_DECLARATION(var, 4, uint, ); BUFFER_DECLARATION(beta, 5, uint, ); BUFFER_DECLARATION(gamma, 6, uint, ); /** Apply batch normalization. * * @note Epsilon parameter in the batch normalization equation should be given as a preprocessor argument using "#define EPSILON". e.g. "#define EPSILON 0.1" * * @param[in] src_ptr Pointer to the first source tensor. Supported data types: F16 * @param[in] src_stride_x Stride of the first source tensor in X dimension (in bytes) * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] src_stride_y Stride of the first source tensor in Y dimension (in bytes) * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] src_stride_z Stride of the first source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] src_offset_first_element_in_bytes The offset of the first element in the first source tensor * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor * @param[in] mean_ptr Pointer to the mean source tensor. Supported data types: same as @p src_ptr * @param[in] mean_stride_x Stride of the mean source tensor in X dimension (in bytes) * @param[in] mean_step_x mean_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] mean_offset_first_element_in_bytes The offset of the first element in the mean source tensor * @param[in] var_ptr Pointer to the var tensor. Supported data types: same as @p src_ptr * @param[in] var_stride_x Stride of the var tensor in X dimension (in bytes) * @param[in] var_step_x var_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] var_offset_first_element_in_bytes The offset of the first element in the var source tensor * @param[in] beta_ptr Pointer to the beta source tensor. Supported data types: same as @p src_ptr * @param[in] beta_stride_x Stride of the beta source tensor in X dimension (in bytes) * @param[in] beta_step_x beta_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] beta_offset_first_element_in_bytes The offset of the first element in the beta source tensor * @param[in] gamma_ptr Pointer to the gamma source tensor. Supported data types: same as @p src_ptr * @param[in] gamma_stride_x Stride of the gamma source tensor in X dimension (in bytes) * @param[in] gamma_step_x gamma_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] gamma_offset_first_element_in_bytes The offset of the first element in the gamma source tensor */ void main(void) { Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT_FP16(src); Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT_FP16(dst); Vector mean = CONVERT_TO_VECTOR_STRUCT_FP16(mean); Vector var = CONVERT_TO_VECTOR_STRUCT_FP16(var); Vector beta = CONVERT_TO_VECTOR_STRUCT_FP16(beta); Vector gamma = CONVERT_TO_VECTOR_STRUCT_FP16(gamma); vec2 input_value; float denominator; float numerator; vec2 x_bar; float gamma_param; float beta_param; uint current_slice = gl_GlobalInvocationID.z; if((current_slice % uint(2)) == uint(0)) { input_value = unpackHalf2x16(src_ptr[src.current_offset >> 2]); denominator = unpackHalf2x16(var_ptr[(var.current_offset + current_slice * var.stride_x) >> 2]).x; denominator = INVSQRT_OP(ADD_OP(denominator, SQCVT_SAT(float(ESPILON)))); //Calculate x bar and store results numerator = unpackHalf2x16(mean_ptr[(mean.current_offset + current_slice * mean.stride_x) >> 2]).x; x_bar = MUL_OP(SUB_OP(input_value, numerator), denominator); gamma_param = unpackHalf2x16(gamma_ptr[(gamma.current_offset + current_slice * beta.stride_x) >> 2]).x; beta_param = unpackHalf2x16(beta_ptr[(beta.current_offset + current_slice * beta.stride_x) >> 2]).x; dst_ptr[dst.current_offset >> 2] = packHalf2x16(ADD_OP(MUL_OP(gamma_param, x_bar), beta_param)); } else { input_value = unpackHalf2x16(src_ptr[src.current_offset >> 2]); denominator = unpackHalf2x16(var_ptr[(var.current_offset + current_slice * var.stride_x) >> 2]).y; denominator = INVSQRT_OP(ADD_OP(denominator, SQCVT_SAT(float(ESPILON)))); //Calculate x bar and store results numerator = unpackHalf2x16(mean_ptr[(mean.current_offset + current_slice * mean.stride_x) >> 2]).y; x_bar = MUL_OP(SUB_OP(input_value, numerator), denominator); gamma_param = unpackHalf2x16(gamma_ptr[(gamma.current_offset + current_slice * beta.stride_x) >> 2]).y; beta_param = unpackHalf2x16(beta_ptr[(beta.current_offset + current_slice * beta.stride_x) >> 2]).y; dst_ptr[dst.current_offset >> 2] = packHalf2x16(ADD_OP(MUL_OP(gamma_param, x_bar), beta_param)); } } #endif /*DATA_TYPE_FP32*/