/* * Copyright (c) 2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/CPP/kernels/CPPNonMaximumSuppressionKernel.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/Validate.h" #include "support/ToolchainSupport.h" #include namespace arm_compute { namespace { Status validate_arguments(const ITensorInfo *bboxes, const ITensorInfo *scores, const ITensorInfo *output_indices, unsigned int max_output_size, const float score_threshold, const float iou_threshold) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(bboxes, scores, output_indices); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bboxes, 1, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output_indices, 1, DataType::S32); ARM_COMPUTE_RETURN_ERROR_ON_MSG(bboxes->num_dimensions() > 2, "The bboxes tensor must be a 2-D float tensor of shape [4, num_boxes]."); ARM_COMPUTE_RETURN_ERROR_ON_MSG(scores->num_dimensions() > 1, "The scores tensor must be a 1-D float tensor of shape [num_boxes]."); ARM_COMPUTE_RETURN_ERROR_ON_MSG(output_indices->num_dimensions() > 1, "The indices must be 1-D integer tensor of shape [M], where max_output_size <= M"); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(bboxes, scores); ARM_COMPUTE_RETURN_ERROR_ON_MSG(output_indices->dimension(0) == 0, "Indices tensor must be bigger than 0"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(max_output_size == 0, "Max size cannot be 0"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(iou_threshold < 0.f || iou_threshold > 1.f, "IOU threshold must be in [0,1]"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(score_threshold < 0.f || score_threshold > 1.f, "Score threshold must be in [0,1]"); return Status{}; } } // namespace CPPNonMaximumSuppressionKernel::CPPNonMaximumSuppressionKernel() : _input_bboxes(nullptr), _input_scores(nullptr), _output_indices(nullptr), _max_output_size(0), _score_threshold(0.f), _iou_threshold(0.f), _num_boxes(0), _scores_above_thd_vector(), _indices_above_thd_vector(), _visited(), _sorted_indices() { } void CPPNonMaximumSuppressionKernel::configure( const ITensor *input_bboxes, const ITensor *input_scores, ITensor *output_indices, unsigned int max_output_size, const float score_threshold, const float iou_threshold) { ARM_COMPUTE_ERROR_ON_NULLPTR(input_bboxes, input_scores, output_indices); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input_bboxes->info(), input_scores->info(), output_indices->info(), max_output_size, score_threshold, iou_threshold)); auto_init_if_empty(*output_indices->info(), TensorShape(max_output_size), 1, DataType::U8, QuantizationInfo()); _input_bboxes = input_bboxes; _input_scores = input_scores; _output_indices = output_indices; _score_threshold = score_threshold; _iou_threshold = iou_threshold; _max_output_size = max_output_size; _num_boxes = input_scores->info()->dimension(0); _scores_above_thd_vector.reserve(_num_boxes); _indices_above_thd_vector.reserve(_num_boxes); // Visited and sorted_indices are preallocated as num_boxes size, which is the maximum size possible // Will be used only N elements where N is the number of score above the threshold _visited.reserve(_num_boxes); _sorted_indices.reserve(_num_boxes); // Configure kernel window Window win = calculate_max_window(*output_indices->info(), Steps()); // The CPPNonMaximumSuppressionKernel doesn't need padding so update_window_and_padding() can be skipped ICPPKernel::configure(win); } Status CPPNonMaximumSuppressionKernel::validate( const ITensorInfo *bboxes, const ITensorInfo *scores, const ITensorInfo *output_indices, unsigned int max_output_size, const float score_threshold, const float iou_threshold) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(bboxes, scores, output_indices, max_output_size, score_threshold, iou_threshold)); return Status{}; } void CPPNonMaximumSuppressionKernel::run(const Window &window, const ThreadInfo &info) { ARM_COMPUTE_UNUSED(info); ARM_COMPUTE_UNUSED(window); ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICPPKernel::window(), window); unsigned int num_above_thd = 0; for(unsigned int i = 0; i < _num_boxes; ++i) { const float score_i = *(reinterpret_cast(_input_scores->ptr_to_element(Coordinates(i)))); if(score_i >= _score_threshold) { _indices_above_thd_vector.emplace_back(i); _scores_above_thd_vector.emplace_back(score_i); // Initialize respective index and visited _sorted_indices.emplace_back(num_above_thd); _visited.push_back(false); ++num_above_thd; } } // Sort selected indices based on scores std::sort(_sorted_indices.begin(), _sorted_indices.end(), [&](unsigned int first, unsigned int second) { return _scores_above_thd_vector[first] > _scores_above_thd_vector[second]; }); // Number of output is the minimum between max_detection and the scores above the threshold const unsigned int num_output = std::min(_max_output_size, num_above_thd); unsigned int output_idx = 0; for(unsigned int i = 0; i < num_above_thd; ++i) { // Check if the output is full if(output_idx >= num_output) { break; } // Check if it was already visited, if not add it to the output and update the indices counter if(!_visited[_sorted_indices[i]]) { *(reinterpret_cast(_output_indices->ptr_to_element(Coordinates(output_idx)))) = _indices_above_thd_vector[_sorted_indices[i]]; ++output_idx; } else { continue; } // Once added one element at the output check if the next ones overlap and can be skipped for(unsigned int j = i + 1; j < num_above_thd; ++j) { if(!_visited[_sorted_indices[j]]) { // Calculate IoU const unsigned int i_index = _indices_above_thd_vector[_sorted_indices[i]]; const unsigned int j_index = _indices_above_thd_vector[_sorted_indices[j]]; // Box-corner format: xmin, ymin, xmax, ymax const auto box_i_xmin = *(reinterpret_cast(_input_bboxes->ptr_to_element(Coordinates(0, i_index)))); const auto box_i_ymin = *(reinterpret_cast(_input_bboxes->ptr_to_element(Coordinates(1, i_index)))); const auto box_i_xmax = *(reinterpret_cast(_input_bboxes->ptr_to_element(Coordinates(2, i_index)))); const auto box_i_ymax = *(reinterpret_cast(_input_bboxes->ptr_to_element(Coordinates(3, i_index)))); const auto box_j_xmin = *(reinterpret_cast(_input_bboxes->ptr_to_element(Coordinates(0, j_index)))); const auto box_j_ymin = *(reinterpret_cast(_input_bboxes->ptr_to_element(Coordinates(1, j_index)))); const auto box_j_xmax = *(reinterpret_cast(_input_bboxes->ptr_to_element(Coordinates(2, j_index)))); const auto box_j_ymax = *(reinterpret_cast(_input_bboxes->ptr_to_element(Coordinates(3, j_index)))); const float area_i = (box_i_xmax - box_i_xmin) * (box_i_ymax - box_i_ymin); const float area_j = (box_j_xmax - box_j_xmin) * (box_j_ymax - box_j_ymin); float overlap; if(area_i <= 0 || area_j <= 0) { overlap = 0.0f; } else { const auto y_min_intersection = std::max(box_i_ymin, box_j_ymin); const auto x_min_intersection = std::max(box_i_xmin, box_j_xmin); const auto y_max_intersection = std::min(box_i_ymax, box_j_ymax); const auto x_max_intersection = std::min(box_i_xmax, box_j_xmax); const auto area_intersection = std::max(y_max_intersection - y_min_intersection, 0.0f) * std::max(x_max_intersection - x_min_intersection, 0.0f); overlap = area_intersection / (area_i + area_j - area_intersection); } if(overlap > _iou_threshold) { _visited[_sorted_indices[j]] = true; } } } } // The output could be full but not the output indices tensor // Instead return values not valid we put -1 for(; output_idx < _max_output_size; ++output_idx) { *(reinterpret_cast(_output_indices->ptr_to_element(Coordinates(output_idx)))) = -1; } } } // namespace arm_compute