/* * Copyright (c) 2018-2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/CL/kernels/CLWinogradInputTransformKernel.h" #include "arm_compute/core/AccessWindowStatic.h" #include "arm_compute/core/CL/CLHelpers.h" #include "arm_compute/core/CL/CLKernelLibrary.h" #include "arm_compute/core/CL/CLValidate.h" #include "arm_compute/core/CL/ICLTensor.h" #include "arm_compute/core/CL/OpenCL.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Utils.h" #include "arm_compute/core/utils/misc/ShapeCalculator.h" #include "support/StringSupport.h" using namespace arm_compute; namespace { Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const WinogradInfo &winograd_info) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32, DataType::F16); ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input); const PadStrideInfo conv_info = winograd_info.convolution_info; const Size2D output_tile_size = winograd_info.output_tile_size; const Size2D kernel_size = winograd_info.kernel_size; ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.stride().first != 1 || conv_info.stride().second != 1, "Winograd input transform only supports unit strides"); ARM_COMPUTE_RETURN_ERROR_ON_MSG(!cl_winograd_convolution_layer_supported(output_tile_size, kernel_size, input->data_layout()), "Winograd input transform not supported"); ARM_COMPUTE_UNUSED(conv_info); ARM_COMPUTE_UNUSED(output_tile_size); ARM_COMPUTE_UNUSED(kernel_size); // Validate configured output if(output->total_size() != 0) { const TensorShape output_shape = misc::shape_calculator::compute_winograd_input_transform_shape(*input, winograd_info); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), output_shape); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); } return Status{}; } std::pair validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, const WinogradInfo &winograd_info) { ARM_COMPUTE_UNUSED(output); ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); bool window_changed = false; Window win = calculate_max_window(*input, Steps(1, 1)); if(input->data_layout() == DataLayout::NCHW) { const PadStrideInfo conv_info = winograd_info.convolution_info; const Size2D output_tile_size = winograd_info.output_tile_size; const Size2D kernel_size = winograd_info.kernel_size; unsigned int num_elems_read_per_iteration_x = output_tile_size.width + kernel_size.width - 1; unsigned int num_elems_read_per_iteration_y = output_tile_size.height + kernel_size.height - 1; AccessWindowRectangle input_access(input, -conv_info.pad_left(), -conv_info.pad_top(), num_elems_read_per_iteration_x, num_elems_read_per_iteration_y); window_changed = update_window_and_padding(win, input_access); } else { AccessWindowStatic input_access(input, 0, -1, input->dimension(0), input->dimension(1) + 1); window_changed = update_window_and_padding(win, input_access); } Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, win); } } // namespace CLWinogradInputTransformKernel::CLWinogradInputTransformKernel() : _border_size(0), _input(nullptr), _output(nullptr), _data_layout(DataLayout::UNKNOWN), _num_tiles_x(0), _num_tiles_y(0), _step_z(1) { } BorderSize CLWinogradInputTransformKernel::border_size() const { return _border_size; } void CLWinogradInputTransformKernel::configure(const ICLTensor *input, ICLTensor *output, const WinogradInfo &winograd_info) { configure(CLKernelLibrary::get().get_compile_context(), input, output, winograd_info); } void CLWinogradInputTransformKernel::configure(const CLCompileContext &compile_context, const ICLTensor *input, ICLTensor *output, const WinogradInfo &winograd_info) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), winograd_info)); const PadStrideInfo conv_info = winograd_info.convolution_info; const Size2D output_tile_size = winograd_info.output_tile_size; const Size2D kernel_size = winograd_info.kernel_size; _data_layout = input->info()->data_layout(); const size_t idx_w = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH); const size_t idx_h = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT); // Compute number of elements to process in the X and Y direction const int num_elements_x = input->info()->dimension(idx_w) - (kernel_size.width - 1) + conv_info.pad_left() + conv_info.pad_right(); const int num_elements_y = input->info()->dimension(idx_h) - (kernel_size.height - 1) + conv_info.pad_top() + conv_info.pad_bottom(); if(_data_layout == DataLayout::NCHW) { // Check if we need to extend the right or bottom border const unsigned int extra_border_right = ((num_elements_x % output_tile_size.width) == 0) ? 0u : static_cast(output_tile_size.width - 1); const unsigned int extra_border_bottom = ((num_elements_y % output_tile_size.height) == 0) ? 0u : static_cast(output_tile_size.height - 1); _border_size = BorderSize(conv_info.pad_top(), conv_info.pad_right() + extra_border_right, conv_info.pad_bottom() + extra_border_bottom, conv_info.pad_left()); } else { _border_size = BorderSize(1U, 0U, 1U, 0); } // Compute the number of output tiles along the x and y direction of size "output_tile_size" const Size2D num_tiles = compute_winograd_convolution_tiles(Size2D(input->info()->dimension(idx_w), input->info()->dimension(idx_h)), kernel_size, output_tile_size, conv_info); _input = input; _output = output; _num_tiles_x = num_tiles.width; _num_tiles_y = num_tiles.height; const TensorShape output_shape = misc::shape_calculator::compute_winograd_input_transform_shape(*input->info(), winograd_info); // Output auto initialization if not yet initialized auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape)); ARM_COMPUTE_ERROR_ON(_num_tiles_x * _num_tiles_y != static_cast(output->info()->dimension(1))); const size_t total_batches = input->info()->tensor_shape().total_size_upper(3); CLBuildOptions build_opts; build_opts.add_option("-DNUM_TILES_X=" + support::cpp11::to_string(_num_tiles_x)); build_opts.add_option("-DPAD_LEFT=" + support::cpp11::to_string(conv_info.pad_left())); build_opts.add_option("-DPAD_TOP=" + support::cpp11::to_string(conv_info.pad_top())); build_opts.add_option("-DOUTPUT_TILE_W=" + support::cpp11::to_string(output_tile_size.width)); build_opts.add_option("-DOUTPUT_TILE_H=" + support::cpp11::to_string(output_tile_size.height)); build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(input->info()->data_type())); build_opts.add_option_if(winograd_info.kernel_size.height == 1, "-DWINOGRAD_INPUT_TRANSFORM_HORIZONTAL"); build_opts.add_option_if(winograd_info.kernel_size.width == 1, "-DWINOGRAD_INPUT_TRANSFORM_VERTICAL"); if(_data_layout == DataLayout::NHWC) { build_opts.add_option_if(total_batches > 1, "-DNUM_TILES_Y=" + support::cpp11::to_string(_num_tiles_y)); build_opts.add_option("-DSRC_DIM_1=" + support::cpp11::to_string(_input->info()->dimension(1))); build_opts.add_option("-DSRC_DIM_2=" + support::cpp11::to_string(_input->info()->dimension(2))); } else { build_opts.add_option_if(total_batches > 1, "-DSRC_DEPTH=" + support::cpp11::to_string(_input->info()->dimension(2))); } // Create kernel std::string kernel_name = "winograd_input_transform_" + output_tile_size.to_string() + "_" + kernel_size.to_string(); // Get the maximum dimension from the tile size const unsigned int tile_max_dim = std::max(output_tile_size.width, output_tile_size.height); // Check optimized kernel if output_dims == 2x2 if((tile_max_dim == 2) && (_data_layout == DataLayout::NCHW)) { _step_z = (_input->info()->dimension(2) % 2) != 0 ? 1 : 2; } // Append stepz and data layout kernel_name += "_stepz"; kernel_name += support::cpp11::to_string(_step_z); kernel_name += "_" + lower_string(string_from_data_layout(_data_layout)); _kernel = create_kernel(compile_context, kernel_name, build_opts.options()); // Create window and update padding auto win_config = validate_and_configure_window(input->info(), output->info(), winograd_info); ARM_COMPUTE_ERROR_THROW_ON(win_config.first); ICLKernel::configure_internal(win_config.second, cl::NDRange(1, 1, 8)); _config_id = kernel_name; _config_id += support::cpp11::to_string(input->info()->dimension(0)); _config_id += "_"; _config_id += support::cpp11::to_string(input->info()->dimension(1)); _config_id += "_"; _config_id += support::cpp11::to_string(input->info()->dimension(2)); _config_id += "_"; _config_id += support::cpp11::to_string(conv_info.pad_left()); _config_id += "_"; _config_id += support::cpp11::to_string(conv_info.pad_top()); _config_id += "_"; _config_id += lower_string(string_from_data_layout(_data_layout)); } Status CLWinogradInputTransformKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const WinogradInfo &winograd_info) { ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output); ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, winograd_info)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get(), winograd_info).first); return Status{}; } void CLWinogradInputTransformKernel::run(const Window &window, cl::CommandQueue &queue) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window); const size_t idx_w = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH); const size_t idx_h = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT); const size_t idx_c = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::CHANNEL); const size_t total_batches = window.shape().total_size_upper(3); // Collapse window Window window_collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ); Window slice = window_collapsed.first_slice_window_3D(); slice.set(idx_w, Window::Dimension(0, _num_tiles_x, 1)); slice.set(idx_h, Window::Dimension(0, _num_tiles_y, 1)); if(_data_layout == DataLayout::NHWC) { slice.set(idx_h, Window::Dimension(0, _num_tiles_y * total_batches, 1)); } ARM_COMPUTE_ERROR_ON(((slice[idx_c].end() - slice[idx_c].start()) % _step_z) != 0); slice.set(idx_c, Window::Dimension(slice[idx_c].start(), slice[idx_c].end(), _step_z)); unsigned int idx = 2 * num_arguments_per_3D_tensor(); _kernel.setArg(idx++, static_cast(_input->info()->strides_in_bytes()[3])); _kernel.setArg(idx++, static_cast(_output->info()->strides_in_bytes()[3])); do { unsigned int idx = 0; add_3D_tensor_argument(idx, _input, slice); add_3D_tensor_argument(idx, _output, slice); enqueue(queue, *this, slice, lws_hint()); } while(window_collapsed.slide_window_slice_3D(slice)); }