/* * Copyright (c) 2017-2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "src/core/CL/kernels/CLSoftmaxLayerKernel.h" #include "arm_compute/core/utils/quantization/AsymmHelpers.h" #include "src/core/CL/CLValidate.h" #include "src/core/helpers/AutoConfiguration.h" #include "src/core/helpers/WindowHelpers.h" #include "support/StringSupport.h" namespace arm_compute { namespace { /** Calculates softmax parameters from the quantized input scale and scaling factor for the exponent and places them as build options. * * Prepares these build options: * -INPUT_BETA_MULTIPLIER, INPUT_BETA_LEFT_SHIFT - quantized representation of beta multiplier. * -DIFF_MIN - threshold difference between maximum value of input data and current processed value, * it defines whether the value will be taken into account or not. * * @param[in] build_opts Build options to extend * @param[in] input_scale Input scaling factor * @param[in] beta Exponent scaling factor beta */ CLBuildOptions prepare_quantized_softmax_build_options(float input_scale, float beta) { // Number of integer bits in temporary fixed-point representation of current-to-max difference static const int scaled_diff_int_bits = 5; // Number of integer bits used in temporary fixed-point representation of exponent accumulator static const int exp_accumulation_in_bits = 12; const double beta_multiplier = std::min( 1.0 * beta * input_scale * (1 << (31 - scaled_diff_int_bits)), (1LL << 31) - 1.0); int input_beta_multiplier; int input_beta_left_shift; quantization::calculate_quantized_multiplier_greater_than_one(beta_multiplier, &input_beta_multiplier, &input_beta_left_shift); const double max_input_rescaled = 1.0 * ((1 << scaled_diff_int_bits) - 1) * (1LL << (31 - scaled_diff_int_bits)) / (1LL << input_beta_left_shift); const int diff_min = -1.f * std::floor(max_input_rescaled); CLBuildOptions build_opts; build_opts.add_option("-DSCALED_DIFF_INT_BITS=" + support::cpp11::to_string(scaled_diff_int_bits)); build_opts.add_option("-DEXP_ACCUMULATION_INT_BITS=" + support::cpp11::to_string(exp_accumulation_in_bits)); build_opts.add_option("-DINPUT_BETA_MULTIPLIER=" + support::cpp11::to_string(input_beta_multiplier)); build_opts.add_option("-DINPUT_BETA_LEFT_SHIFT=" + support::cpp11::to_string(input_beta_left_shift)); build_opts.add_option("-DDIFF_MIN=" + support::cpp11::to_string(diff_min)); return build_opts; } Status validate_arguments_1DMaxShiftExpSum(const ITensorInfo *input, const ITensorInfo *max, const ITensorInfo *output, const ITensorInfo *sum) { ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(max, sum, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, max); const bool is_quantized_asymmetric = is_data_type_quantized_asymmetric(input->data_type()); // Checks performed when output is configured if(output->total_size() != 0) { if(is_quantized_asymmetric) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S32); } else { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); } ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output); } // Checks performed when sum is configured if(sum->total_size() != 0) { if(is_quantized_asymmetric) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(sum, 1, DataType::S32); } else { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(max, sum); } ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(max, sum); } return Status{}; } Status validate_arguments_1DNorm(const ITensorInfo *input, const ITensorInfo *sum, const ITensorInfo *output, const SoftmaxKernelInfo &info) { ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::S32, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(sum, output); ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, sum); ARM_COMPUTE_RETURN_ERROR_ON(info.is_log && !is_data_type_float(info.input_data_type)); // Note: output should always have a scale of 1/256 and offset 0 const QuantizationInfo allowed_quantization_info = get_softmax_output_quantization_info(info.input_data_type, info.is_log); const bool is_quantized_asymmetric = is_data_type_quantized_asymmetric(info.input_data_type); // Checks performed when output is configured if(output->total_size() != 0) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output); if(!is_quantized_asymmetric) { ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); } else { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED); ARM_COMPUTE_RETURN_ERROR_ON(output->quantization_info() != allowed_quantization_info); } } return Status{}; } } // namespace /**< Grid size (obtained through auto-tuning) */ const unsigned int CLLogits1DMaxShiftExpSumKernel::_grid_size = 64; /**< Vector size in the serial case (obtained through auto-tuning) */ const unsigned int CLLogits1DMaxShiftExpSumKernel::_serial_vector_size = 8; /**< Vector size in the parallel case (obtained through auto-tuning, enables the best memory access pattern for Bifrost) .*/ const unsigned int CLLogits1DMaxShiftExpSumKernel::_parallel_vector_size = 4; CLLogits1DMaxShiftExpSumKernel::CLLogits1DMaxShiftExpSumKernel() : _input(nullptr), _max(nullptr), _output(nullptr), _sum(nullptr) { } void CLLogits1DMaxShiftExpSumKernel::configure(const ICLTensor *input, ICLTensor *max, ICLTensor *output, ICLTensor *sum, const SoftmaxKernelInfo &info) { configure(CLKernelLibrary::get().get_compile_context(), input, max, output, sum, info); } void CLLogits1DMaxShiftExpSumKernel::configure(const CLCompileContext &compile_context, const ICLTensor *input, ICLTensor *max, ICLTensor *output, ICLTensor *sum, const SoftmaxKernelInfo &info) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, max, sum, output); auto padding_info = get_padding_info({ input, max, output, sum }); // Output auto initialization if not yet initialized auto_init_if_empty(*sum->info(), input->info()->clone()->set_tensor_shape(max->info()->tensor_shape())); auto_init_if_empty(*output->info(), *input->info()->clone()); // Perform validation step ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_1DMaxShiftExpSum(input->info(), max->info(), output->info(), sum->info())); _input = input; _max = max; _output = output; _sum = sum; const DataType dt = input->info()->data_type(); const UniformQuantizationInfo qinfo = input->info()->quantization_info().uniform(); const size_t reduction_dim_size = input->info()->dimension(0); const float beta = info.beta; const auto is_signed_qasymm8 = is_data_type_quantized_asymmetric_signed(info.input_data_type); const int min_value = is_signed_qasymm8 ? CL_SCHAR_MIN : 0; ParallelReductionInfo parallel_reduction_info = is_parallel_reduction(reduction_dim_size); const unsigned int vector_size = adjust_vec_size(std::get<1>(parallel_reduction_info), reduction_dim_size); // Set build options CLBuildOptions build_opts; build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(dt)); build_opts.add_option("-DMIN_VALUE=" + support::cpp11::to_string(min_value)); build_opts.add_option("-DVECTOR_SIZE=" + support::cpp11::to_string(vector_size)); build_opts.add_option("-DSRC_WIDTH=" + support::cpp11::to_string(reduction_dim_size)); build_opts.add_option("-DVECTOR_SIZE_LEFTOVER=" + support::cpp11::to_string(reduction_dim_size % vector_size)); build_opts.add_option("-DLOG_VECTOR_SIZE=" + support::cpp11::to_string(lround(log2(vector_size)))); build_opts.add_option_if((reduction_dim_size % vector_size) != 0, "-DNON_MULTIPLE_OF_VECTOR_SIZE"); build_opts.add_option_if(is_signed_qasymm8, "-DQASYMM8_SIGNED"); build_opts.add_option_if(is_data_type_float(dt) && (beta != 1.0f), "-DBETA=" + float_to_string_with_full_precision(beta)); build_opts.add_option_if(is_data_type_float(dt) && info.is_log, "-DLOG_SOFTMAX"); build_opts.add_option_if(is_data_type_float(dt), "-DMINVAL=" + ((dt == DataType::F16) ? std::string("-HALF_MAX") : std::string("-FLT_MAX"))); build_opts.add_options_if(is_data_type_quantized_asymmetric(dt), prepare_quantized_softmax_build_options(qinfo.scale, beta).options()); cl::NDRange lws_hint(cl::NullRange); std::string kernel_name = std::string("softmax_layer_max_shift_exp_sum_") + (is_data_type_quantized_asymmetric(dt) ? "quantized_" : ""); // Configure parallel kernel if needed if(std::get<0>(parallel_reduction_info)) { kernel_name += "parallel"; bool is_grid_size_pow2 = (_grid_size != 0) && ((_grid_size & (_grid_size - 1)) == 0); build_opts.add_option_if(is_grid_size_pow2 && _grid_size <= 256, "-DGRID_SIZE=" + support::cpp11::to_string(_grid_size)); // Handle boundary conditions. const unsigned int multiple_grid_size = (reduction_dim_size / vector_size) % _grid_size; build_opts.add_option_if((multiple_grid_size != 0) || ((reduction_dim_size % vector_size) != 0), "-DNON_MULTIPLE_OF_GRID_SIZE"); // Setting _lws_hint in this way can also communicate grid_size to CLLogits1DMaxShiftExpSumKernel::run(). // A single workgroup performs reduction in dimension 0 in the parallel case, hence lws[0]==gws[0]. lws_hint = cl::NDRange(_grid_size); } else { kernel_name += "serial"; } // Create kernel. _kernel = create_kernel(compile_context, kernel_name, build_opts.options()); // Configure window Window win = calculate_max_window(*(input->info()), Steps(reduction_dim_size)); ICLKernel::configure_internal(win, lws_hint); ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info)); } Status CLLogits1DMaxShiftExpSumKernel::validate(const ITensorInfo *input, const ITensorInfo *max, const ITensorInfo *output, const ITensorInfo *sum) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_1DMaxShiftExpSum(input, max, output, sum)); return Status{}; } CLLogits1DMaxShiftExpSumKernel::ParallelReductionInfo CLLogits1DMaxShiftExpSumKernel::is_parallel_reduction(size_t size) { bool is_parallel_reduction = (size >= (_grid_size * _serial_vector_size)) && (_grid_size > 1); unsigned int vector_size = is_parallel_reduction ? _parallel_vector_size : _serial_vector_size; return std::make_tuple(is_parallel_reduction, vector_size); } void CLLogits1DMaxShiftExpSumKernel::run(const Window &window, cl::CommandQueue &queue) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window); // Collapse window in Z dimension Window window_collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ); // Reconfigure window in case of parallel reduction ParallelReductionInfo parallel_reduction_info = is_parallel_reduction(_input->info()->dimension(0)); if(std::get<0>(parallel_reduction_info)) { // Launch grid_size parallel work items window_collapsed.set(Window::DimX, Window::Dimension(0, _grid_size, 1)); } // Get slices Window slice = window_collapsed.first_slice_window_3D(); do { unsigned int idx = 0; // Set inputs add_3D_tensor_argument(idx, _input, slice); add_3D_tensor_argument(idx, _max, slice); add_3D_tensor_argument(idx, _output, slice); add_3D_tensor_argument(idx, _sum, slice); enqueue(queue, *this, slice, lws_hint()); } while(window_collapsed.slide_window_slice_3D(slice)); } CLLogits1DNormKernel::CLLogits1DNormKernel() : _input(nullptr), _sum(nullptr), _output(nullptr) { } void CLLogits1DNormKernel::configure(const ICLTensor *input, const ICLTensor *sum, ICLTensor *output, const SoftmaxKernelInfo &info) { configure(CLKernelLibrary::get().get_compile_context(), input, sum, output, info); } void CLLogits1DNormKernel::configure(const CLCompileContext &compile_context, const ICLTensor *input, const ICLTensor *sum, ICLTensor *output, const SoftmaxKernelInfo &info) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, sum, output); auto padding_info = get_padding_info({ input, output, sum }); // Note: output should always have a scale of 1/256 and offset 0 const bool is_quantized_asymmetric = is_data_type_quantized_asymmetric(info.input_data_type); const DataType output_data_type = info.input_data_type; const QuantizationInfo allowed_quantization_info = get_softmax_output_quantization_info(info.input_data_type, info.is_log); const UniformQuantizationInfo qinfo = input->info()->quantization_info().uniform(); // Output auto initialization if not yet initialized auto_init_if_empty(*output->info(), input->info()->clone()->set_data_type(output_data_type).set_quantization_info(allowed_quantization_info)); // Perform validation step ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_1DNorm(input->info(), sum->info(), output->info(), info)); _input = input; _sum = sum; _output = output; const auto is_signed_qasymm8 = is_data_type_quantized_asymmetric_signed(info.input_data_type); const int min_value = is_signed_qasymm8 ? CL_SCHAR_MIN : 0; const unsigned int vector_size = adjust_vec_size(16, input->info()->dimension(0)); // Set build options CLBuildOptions build_opts; build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(info.input_data_type)); build_opts.add_option("-DMIN_VALUE=" + support::cpp11::to_string(min_value)); build_opts.add_option("-DVECTOR_SIZE=" + support::cpp11::to_string(vector_size)); build_opts.add_option("-DVECTOR_SIZE_LEFTOVER=" + support::cpp11::to_string(input->info()->dimension(0) % vector_size)); build_opts.add_option_if(is_data_type_quantized_asymmetric_signed(info.input_data_type), "-DQASYMM8_SIGNED"); build_opts.add_options_if(is_quantized_asymmetric, prepare_quantized_softmax_build_options(qinfo.scale, info.beta).options()); build_opts.add_option_if(info.is_log, "-DLOG_SOFTMAX"); // Create kernel std::string kernel_name = std::string("softmax_layer_norm") + (is_quantized_asymmetric ? "_quantized" : ""); _kernel = create_kernel(compile_context, kernel_name, build_opts.options()); // Configure window auto win = calculate_max_window(*(input->info()), Steps(vector_size)); ICLKernel::configure_internal(win); ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info)); } Status CLLogits1DNormKernel::validate(const ITensorInfo *input, const ITensorInfo *sum, const ITensorInfo *output, const SoftmaxKernelInfo &info) { ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_1DNorm(input, sum, output, info)); return Status{}; } void CLLogits1DNormKernel::run(const Window &window, cl::CommandQueue &queue) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window); Window window_collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ); Window slice = window_collapsed.first_slice_window_3D(); do { Window sum_slice = slice; sum_slice.set(Window::DimX, Window::Dimension(0, 1, 1)); unsigned int idx = 0; // Set inputs add_3D_tensor_argument(idx, _input, slice); add_3D_tensor_argument(idx, _sum, sum_slice); add_3D_tensor_argument(idx, _output, slice); enqueue(queue, *this, slice, lws_hint()); } while(window_collapsed.slide_window_slice_3D(slice)); } } // namespace arm_compute